Bivariate Kernel Deconvolution with Panel Data

被引:0
|
作者
Guillermo Basulto-Elias
Alicia L. Carriquiry
Kris De Brabanter
Daniel J. Nordman
机构
[1] Iowa State University,
来源
Sankhya B | 2021年 / 83卷
关键词
Deconvolution density estimation; empirical characteristic function; flat-top kernel; measurement error.; Primary 62G07; Secondary 65T50;
D O I
暂无
中图分类号
学科分类号
摘要
We consider estimation of the density of a multivariate response, that is not observed directly but only through measurements contaminated by additive error. Our focus is on the realistic sampling case of bivariate panel data (repeated contaminated bivariate measurements on each sample unit) with an unknown error distribution. Several factors can affect the performance of kernel deconvolution density estimators, including the choice of the kernel and the estimation approach of the unknown error distribution. As the choice of the kernel function is critically important, the class of flat-top kernels can have advantages over more commonly implemented alternatives. We describe different approaches for density estimation with multivariate panel responses, and investigate their performance through simulation. We examine competing kernel functions and describe a flat-top kernel that has not been used in deconvolution problems. Moreover, we study several nonparametric options for estimating the unknown error distribution. Finally, we also provide guidelines to the numerical implementation of kernel deconvolution in higher sampling dimensions.
引用
收藏
页码:122 / 151
页数:29
相关论文
共 50 条
  • [1] Bivariate Kernel Deconvolution with Panel Data
    Basulto-Elias, Guillermo
    Carriquiry, Alicia L.
    De Brabanter, Kris
    Nordman, Daniel J.
    [J]. SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2021, 83 (01): : 122 - 151
  • [2] Bivariate uniform deconvolution
    Benesova, Martina
    van Es, Bert
    Tegelaar, Peter
    [J]. STATISTICS, 2016, 50 (04) : 812 - 840
  • [3] Bivariate discrete beta Kernel graduation of mortality data
    Mazza, Angelo
    Punzo, Antonio
    [J]. LIFETIME DATA ANALYSIS, 2015, 21 (03) : 419 - 433
  • [4] Bivariate discrete beta Kernel graduation of mortality data
    Angelo Mazza
    Antonio Punzo
    [J]. Lifetime Data Analysis, 2015, 21 : 419 - 433
  • [5] Deconvolution from panel data with unknown error distribution
    Neumann, Michael H.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2007, 98 (10) : 1955 - 1968
  • [6] Kernel estimation for panel data with heterogeneous dynamics
    Okui, Ryo
    Yanagi, Takahide
    [J]. ECONOMETRICS JOURNAL, 2020, 23 (01): : 156 - 175
  • [7] KERNEL-SMOOTHED CONDITIONAL QUANTILES OF CORRELATED BIVARIATE DISCRETE DATA
    De Gooijer, Jan G.
    Yuan, Ao
    [J]. STATISTICA SINICA, 2011, 21 (04) : 1611 - 1638
  • [8] Improved kernel density estimation for clustered data using regularisation and deconvolution
    Chen, Q
    Sandoz, D
    Wynne, RJ
    Kruger, U
    [J]. PROCEEDINGS OF THE 2000 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2000, : 1410 - 1414
  • [9] Eigenanalysis on a bivariate covariance kernel
    Cuadras, Carles A.
    Cuadras, Daniel
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2008, 99 (10) : 2497 - 2507
  • [10] Kernel Choice in Bivariate Kernel Density Derivative Estimates
    Vopatova, Kamila
    [J]. XXIX INTERNATIONAL COLLOQUIUM ON THE MANAGEMENT OF EDUCATIONAL PROCESS, PT 1, 2011, : 313 - 319