Approximate orthogonality of permutation operators, with application to quantum information

被引:0
|
作者
Aram W. Harrow
机构
[1] Massachusetts Institute of Technology,Center for Theoretical Physics
关键词
Quantum information; Permutations; Representation theory; 81P45; 81P50; 20B30;
D O I
暂无
中图分类号
学科分类号
摘要
Consider the n! different unitary matrices that permute nd-dimensional quantum systems. If d≥n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge n$$\end{document} then they are linearly independent. This paper discusses a sense in which they are approximately orthogonal (with respect to the Hilbert–Schmidt inner product, ⟨A,B⟩=trA†B/trI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle A,B\rangle = \textrm{tr}A^\dag B/\textrm{tr}I$$\end{document}) if d≫n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\gg n^2$$\end{document}, or, in a different sense, if d≫n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\gg n$$\end{document}. Previous work had shown pairwise approximate orthogonality of these matrices, but here we show a more collective statement, quantified in terms of the operator norm distance of the Gram matrix to the identity matrix. This simple point has several applications in quantum information and random matrix theory: (1) showing that random maximally entangled states resemble fully random states, (2) showing that Boson sampling output probabilities resemble those from Gaussian matrices, (3) improving the Eggeling–Werner scheme for multipartite data hiding, (4) proving that the product test of Harrow–Montanaro cannot be performed using LOCC without a large number of copies of the state to be tested, (5) proving that the purity of a quantum state also cannot be efficiently tested using LOCC, and (6, published separately with Brandão and Horodecki) helping prove that poly-size random quantum circuits are poly-designs.
引用
收藏
相关论文
共 50 条
  • [1] Approximate orthogonality of permutation operators, with application to quantum information
    Harrow, Aram W.
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2023, 114 (01)
  • [2] Approximate orthogonality of complex fuzzy sets and approximately orthogonality preserving operators
    Hu, Bo
    Bi, Lvqing
    Dai, Songsong
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 37 (04) : 5025 - 5030
  • [3] Some study of the approximate Birkhoff orthogonality and orthogonality of bounded linear operators
    Xie, Huayou
    Zhou, Chuanjiang
    Li, Yongjin
    [J]. AEQUATIONES MATHEMATICAE, 2024, 98 (03) : 819 - 835
  • [4] Some study of the approximate Birkhoff orthogonality and orthogonality of bounded linear operators
    Xie, Huayou
    Zhou, Chuanjiang
    Li, Yongjin
    [J]. AEQUATIONES MATHEMATICAE, 2024, 98 (03) : 819 - 835
  • [5] On approximate A-seminorm and A-numerical radius orthogonality of operators
    Conde, Cristian
    Feki, Kais
    [J]. arXiv, 2023,
  • [6] ON APPROXIMATE A-SEMINORM AND A-NUMERICAL RADIUS ORTHOGONALITY OF OPERATORS
    Conde, C.
    Feki, K.
    [J]. ACTA MATHEMATICA HUNGARICA, 2024, 173 (01) : 227 - 245
  • [7] On approximate orthogonality and symmetry of operators in semi-Hilbertian structure
    Sen, Jeet
    Sain, Debmalya
    Paul, Kallol
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 170
  • [8] REPRESENTATION OF PERMUTATION OPERATORS IN QUANTUM MECHANICS
    SEAGRAVES, P
    [J]. NUCLEAR PHYSICS, 1966, 80 (03): : 674 - +
  • [9] Approximate Birkhoff-James orthogonality in the space of bounded linear operators
    Paul, Kallol
    Sain, Debmalya
    Mal, Arpita
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 537 : 348 - 357
  • [10] Approximate Birkhoff–James orthogonality and smoothness in the space of bounded linear operators
    Arpita Mal
    Kallol Paul
    T. S. S. R. K. Rao
    Debmalya Sain
    [J]. Monatshefte für Mathematik, 2019, 190 : 549 - 558