Sublinear-time distributed algorithms for detecting small cliques and even cycles

被引:0
|
作者
Talya Eden
Nimrod Fiat
Orr Fischer
Fabian Kuhn
Rotem Oshman
机构
[1] Tel-Aviv University,Electrical Engineering Department
[2] Tel-Aviv University,Computer Science Department
[3] University of Freiburg,Computer Science Department
来源
Distributed Computing | 2022年 / 35卷
关键词
Distributed computing; Subgraph freeness; Expander decomposition; CONGEST;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we give sublinear-time distributed algorithms in the CONGEST\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {CONGEST}$$\end{document} model for finding or listing cliques and even-length cycles. We show for the first time that all copies of 4-cliques and 5-cliques in the network graph can be detected and listed in sublinear time, O(n5/6+o(1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{5/6+o(1)})$$\end{document} rounds and O(n73/75+o(1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{73/75+o(1)})$$\end{document} rounds, respectively. For even-length cycles, C2k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{2k}$$\end{document}, we give an improved sublinear-time algorithm, which exploits a new connection to extremal combinatorics. For example, for 6-cycles we improve the running time from O~(n5/6)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{O}}(n^{5/6})$$\end{document} to O~(n3/4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{O}}(n^{3/4})$$\end{document} rounds. We also show two obstacles on proving lower bounds for C2k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{2k}$$\end{document}-freeness: first, we use the new connection to extremal combinatorics to show that the current lower bound of Ω~(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{\varOmega }}(\sqrt{n})$$\end{document} rounds for 6-cycle freeness cannot be improved using partition-based reductions from 2-party communication complexity, the technique by which all known lower bounds on subgraph detection have been proven to date. Second, we show that there is some fixed constant δ∈(0,1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta \in (0,1/2)$$\end{document} such that for anyk, a lower bound of Ω(n1/2+δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (n^{1/2+\delta })$$\end{document} on C2k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{2k}$$\end{document}-freeness would imply new lower bounds in circuit complexity. We use the same technique to show a barrier for proving any polynomial lower bound on triangle-freeness. For general subgraphs, it was shown by Fischer et al. that for any fixed k, there exists a subgraph H of size k such that H-freeness requires Ω~(n2-Θ(1/k))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{\varOmega }}(n^{2-\varTheta (1/k)})$$\end{document} rounds. It was left as an open problem whether this is tight, or whether some constant-sized subgraph requires truly quadratic time to detect. We show that in fact, for any subgraph H of constant size k, the H-freeness problem can be solved in O(n2-Θ(1/k))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{2 - \varTheta (1/k)})$$\end{document} rounds, nearly matching the lower bound.
引用
收藏
页码:207 / 234
页数:27
相关论文
共 34 条
  • [1] Sublinear-time distributed algorithms for detecting small cliques and even cycles
    Eden, Talya
    Fiat, Nimrod
    Fischer, Orr
    Kuhn, Fabian
    Oshman, Rotem
    [J]. DISTRIBUTED COMPUTING, 2022, 35 (03) : 207 - 234
  • [2] Sublinear-time Algorithms
    Czumaj, Artur
    Sohler, Christian
    [J]. PROPERTY TESTING: CURRENT RESEARCH AND SURVEYS, 2010, 6390 : 41 - +
  • [3] SUBLINEAR-TIME ALGORITHMS
    Woeginger, Gerhard J.
    Czumaj, Artur
    Sohler, Christian
    [J]. BULLETIN OF THE EUROPEAN ASSOCIATION FOR THEORETICAL COMPUTER SCIENCE, 2006, (89): : 23 - 47
  • [4] On derandomizing probabilistic sublinear-time algorithms
    Zimand, Marius
    [J]. TWENTY-SECOND ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 2007, : 1 - +
  • [5] Sublinear-time algorithms for tournament graphs
    Dantchev, Stefan
    Friedetzky, Tom
    Nagel, Lars
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2011, 22 (03) : 469 - 481
  • [6] Combinatorial Sublinear-Time Fourier Algorithms
    M. A. Iwen
    [J]. Foundations of Computational Mathematics, 2010, 10 : 303 - 338
  • [7] Sublinear-time algorithms for tournament graphs
    Stefan Dantchev
    Tom Friedetzky
    Lars Nagel
    [J]. Journal of Combinatorial Optimization, 2011, 22 : 469 - 481
  • [8] Sublinear-Time Algorithms for Tournament Graphs
    Dantchev, Stefan
    Friedetzky, Tom
    Nagel, Lars
    [J]. COMPUTING AND COMBINATORICS, PROCEEDINGS, 2009, 5609 : 459 - 471
  • [9] Combinatorial Sublinear-Time Fourier Algorithms
    Iwen, M. A.
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2010, 10 (03) : 303 - 338
  • [10] Sublinear-Time Algorithms for Compressive Phase Retrieval
    Li, Yi
    Nakos, Vasileios
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (11) : 7302 - 7310