Given an open bounded subset Ω of Rn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{R}^n}$$\end{document}, which is convex and satisfies an interior sphere condition, we consider the pde -Δ∞u=1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${-\Delta_{\infty} u = 1}$$\end{document} in Ω, subject to the homogeneous boundary condition u = 0 on ∂Ω. We prove that the unique solution to this Dirichlet problem is power-concave (precisely, 3/4 concave) and it is of class C1(Ω). We then investigate the overdetermined Serrin-type problem, formerly considered in Buttazzo and Kawohl (Int Math Res Not, pp 237–247, 2011), obtained by adding the extra boundary condition |∇u|=a\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${|\nabla u| = a}$$\end{document} on ∂Ω; by using a suitable P-function we prove that, if Ω satisfies the same assumptions as above and in addition contains a ball which touches ∂Ω at two diametral points, then the existence of a solution to this Serrin-type problem implies that necessarily the cut locus and the high ridge of Ω coincide. In turn, in dimension n = 2, this entails that Ω must be a stadium-like domain, and in particular it must be a ball in case its boundary is of class C2.