Nearest Neighbor Queries in Metric Spaces

被引:0
|
作者
K. L. Clarkson
机构
[1] Bell Laboratories,
[2] Lucent Technologies,undefined
[3] Murray Hill,undefined
[4] NJ 07974,undefined
[5] USA clarkson@research.bell-labs.com,undefined
来源
关键词
Data Structure; Input Data; Distance Measure; Failure Probability; Random Element;
D O I
暂无
中图分类号
学科分类号
摘要
Given a set S of n sites (points), and a distance measure d , the nearestneighborsearching problem is to build a data structure so that given a query point q , the site nearest to q can be found quickly. This paper gives data structures for this problem when the sites and queries are in a metric space. One data structure, D(S) , uses a divide-and-conquer recursion. The other data structure, M(S,Q) , is somewhat like a skiplist. Both are simple and implementable. The data structures are analyzed when the metric space obeys a certain sphere-packing bound, and when the sites and query points are random and have distributions with an exchangeability property. This property implies, for example, that query point q is a random element of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ S\cup\{q\} $ \end{document} . Under these conditions, the preprocessing and space bounds for the algorithms are close to linear in n . They depend also on the sphere-packing bound, and on the logarithm of the distanceratio\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \Upsilon(S) $ \end{document} of S , the ratio of the distance between the farthest pair of points in S to the distance between the closest pair. The data structure M(S,Q) requires as input data an additional set Q , taken to be representative of the query points. The resource bounds of M(S,Q) have a dependence on the distance ratio of S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\cup$ \end{document}Q . While M(S,Q) can return wrong answers, its failure probability can be bounded, and is decreasing in a parameter K . Here K≤ |Q|/n is chosen when building M(S,Q) . The expected query time for M(S,Q) is O(Klog  n)log \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\Upsilon(S\cup Q)$\end{document} , and the resource bounds increase linearly in K . The data structure D(S) has expected O( log n)O(1) query time, for fixed distance ratio. The preprocessing algorithm for M(S,Q) can be used to solve the all nearest neighbor problem for S in O(n(log  n)2(log ϒ(S))2) expected time.
引用
收藏
页码:63 / 93
页数:30
相关论文
共 50 条
  • [1] Nearest neighbor queries in metric spaces
    Clarkson, KL
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 1999, 22 (01) : 63 - 93
  • [2] Aggregate k Nearest Neighbor Queries in Metric Spaces
    Ding, Xin
    Zhang, Yuanliang
    Chen, Lu
    Yang, Keyu
    Gao, Yunjun
    [J]. WEB AND BIG DATA (APWEB-WAIM 2018), PT II, 2018, 10988 : 317 - 333
  • [3] Distributed k-Nearest Neighbor Queries in Metric Spaces
    Ding, Xin
    Zhang, Yuanliang
    Chen, Lu
    Gao, Yunjun
    Zheng, Baihua
    [J]. WEB AND BIG DATA (APWEB-WAIM 2018), PT I, 2018, 10987 : 236 - 252
  • [4] Reverse nearest neighbor search in metric spaces
    Tao, Yufei
    Yiu, Man Lung
    Mamoulis, Nikos
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2006, 18 (09) : 1239 - 1252
  • [5] Active Nearest-Neighbor Learning in Metric Spaces
    Kontorovich, Aryeh
    Sabato, Sivan
    Urner, Ruth
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2018, 18
  • [6] Active Nearest-Neighbor Learning in Metric Spaces
    Kontorovich, Aryeh
    Sabato, Sivan
    Urner, Ruth
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [7] Nearest neighbor and reverse nearest neighbor queries for moving objects
    Benetis, R
    Jensen, CS
    Karciauskas, G
    Saltenis, S
    [J]. IDEAS 2002: INTERNATIONAL DATABASE ENGINEERING AND APPLICATIONS SYMPOSIUM, PROCEEDINGS, 2002, : 44 - 53
  • [8] Constrained nearest neighbor queries
    Ferhatosmanoglu, H
    Stanoi, I
    Agrawal, D
    El Abbadi, A
    [J]. ADVANCES IN SPATIAL AND TEMPORAL DATABASES, PROCEEDINGS, 2001, 2121 : 257 - 276
  • [9] Visible nearest neighbor queries
    Nutanong, Sarana
    Tanin, Egemen
    Zhang, Rui
    [J]. ADVANCES IN DATABASES: CONCEPTS, SYSTEMS AND APPLICATIONS, 2007, 4443 : 876 - +
  • [10] Group nearest neighbor queries
    Papadias, D
    Shen, QM
    Tao, YF
    Mouratidis, K
    [J]. 20TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING, PROCEEDINGS, 2004, : 301 - +