Spatial dependence in stock returns: local normalization and VaR forecasts

被引:0
|
作者
Thilo A. Schmitt
Rudi Schäfer
Dominik Wied
Thomas Guhr
机构
[1] Universität Duisburg-Essen,Fakultät für Physik
[2] Fakultät Statistik,undefined
来源
Empirical Economics | 2016年 / 50卷
关键词
GARCH; One-factor model; Power mapping; Spatial autoregressive model;
D O I
暂无
中图分类号
学科分类号
摘要
We analyze a recently proposed spatial autoregressive model for stock returns and compare it to a one-factor model and the sample covariance matrix. The influence of refinements to these covariance estimation methods is studied. We employ power mapping and the shrinkage estimator as noise reduction techniques for the correlations. Further, we address the empirically observed time-varying trends and volatilities of stock returns. Local normalization strips the time series of changing trends and fluctuating volatilities. As an alternative method, we consider a GARCH fit. In the context of portfolio optimization, we find that the spatial model and the shrinkage estimator have the best match between the estimated and realized risk measures.
引用
收藏
页码:1091 / 1109
页数:18
相关论文
共 50 条
  • [1] Spatial dependence in stock returns: local normalization and VaR forecasts
    Schmitt, Thilo A.
    Schaefer, Rudi
    Wied, Dominik
    Guhr, Thomas
    EMPIRICAL ECONOMICS, 2016, 50 (03) : 1091 - 1109
  • [2] Modeling different kinds of spatial dependence in stock returns
    Arnold, Matthias
    Stahlberg, Sebastian
    Wied, Dominik
    EMPIRICAL ECONOMICS, 2013, 44 (02) : 761 - 774
  • [3] Modeling different kinds of spatial dependence in stock returns
    Matthias Arnold
    Sebastian Stahlberg
    Dominik Wied
    Empirical Economics, 2013, 44 : 761 - 774
  • [4] Testing the correct specification of a system of spatial dependence models for stock returns
    Kutzker, Tim
    Wied, Dominik
    EMPIRICAL ECONOMICS, 2024, 66 (05) : 2083 - 2103
  • [5] Non-linear forecasts of stock returns
    Kanas, A
    JOURNAL OF FORECASTING, 2003, 22 (04) : 299 - 315
  • [6] Economic forecasts, anchoring bias, and stock returns
    Birz, Gene
    Dutta, Sandip
    Yu, Han
    FINANCIAL MANAGEMENT, 2022, 51 (01) : 169 - 191
  • [7] Neural network linear forecasts for stock returns
    Kanas, A
    INTERNATIONAL JOURNAL OF FINANCE & ECONOMICS, 2001, 6 (03) : 245 - 254
  • [8] Unexpected management forecasts and future stock returns
    Kitagawa, Norio
    Shuto, Akinobu
    JOURNAL OF BUSINESS FINANCE & ACCOUNTING, 2024, 51 (9-10) : 2452 - 2489
  • [9] Testing the correct specification of a system of spatial dependence models for stock returns
    Tim Kutzker
    Dominik Wied
    Empirical Economics, 2024, 66 : 2083 - 2103
  • [10] LOCAL DEPENDENCE FUNCTIONS FOR NORTH AND SOUTH AMERICAN STOCK INDEX RETURNS
    Ane, Thierry
    Fabre, Guillaume
    ADVANCES AND APPLICATIONS IN STATISTICS, 2008, 9 (02) : 153 - 176