On finitely generated modules over quasi-Euclidean rings

被引:0
|
作者
Luc Guyot
机构
[1] EPFL ENT CBS BBP/HBP,
来源
Archiv der Mathematik | 2017年 / 108卷
关键词
Quasi-Euclidean ring; Elementary divisor ring; Finitely generated module; Finitely generated Abelian group; Elementary rank; Nielsen equivalence; Primary 13F07; Secondary 20K21; 20F05;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a unital commutative ring, and let M be an R-module that is generated by k elements but not less. Let En(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {E}_n(R)$$\end{document} be the subgroup of GLn(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {GL}_n(R)$$\end{document} generated by the elementary matrices. In this paper we study the action of En(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {E}_n(R)$$\end{document} by matrix multiplication on the set Umn(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {Um}_n(M)$$\end{document} of unimodular rows of M of length n≥k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge k$$\end{document}. Assuming R is moreover Noetherian and quasi-Euclidean, e.g., R is a direct product of finitely many Euclidean rings, we show that this action is transitive if n>k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n > k$$\end{document}. We also prove that Umk(M)/Ek(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {Um}_k(M) /\text {E}_k(R)$$\end{document} is equipotent with the unit group of R/a1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R/\mathfrak {a}_1$$\end{document} where a1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {a}_1$$\end{document} is the first invariant factor of M. These results encompass the well-known classification of Nielsen non-equivalent generating tuples in finitely generated Abelian groups.
引用
收藏
页码:357 / 363
页数:6
相关论文
共 50 条
  • [1] On finitely generated modules over quasi-Euclidean rings
    Guyot, Luc
    ARCHIV DER MATHEMATIK, 2017, 108 (04) : 357 - 363
  • [2] Euclidean pairs and quasi-Euclidean rings
    Alahmadi, Adel
    Jain, S. K.
    Lam, T. Y.
    Leroy, A.
    JOURNAL OF ALGEBRA, 2014, 406 : 154 - 170
  • [3] DIVISION CHAINS AND QUASI-EUCLIDEAN RINGS
    Anderson, D. D.
    Juett, J. R.
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 58 (04): : 417 - 435
  • [4] Finitely generated modules over pullback rings
    Arnold, DM
    Laubenbacher, RC
    JOURNAL OF ALGEBRA, 1996, 184 (01) : 304 - 332
  • [5] FINITELY GENERATED MODULES OVER VALUATION RINGS
    SALCE, L
    ZANARDO, P
    COMMUNICATIONS IN ALGEBRA, 1984, 12 (15-1) : 1795 - 1812
  • [6] FINITELY GENERATED MODULES OVER BEZOUT RINGS
    WIEGAND, RA
    WIEGAND, SM
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A62 - A62
  • [7] Flat modules and rings finitely generated as modules over their center
    Tuganbaev, AA
    MATHEMATICAL NOTES, 1996, 60 (1-2) : 186 - 203
  • [8] RINGS WHOSE MODULES ARE FINITELY GENERATED OVER THEIR ENDOMORPHISM RINGS
    Nguyen Viet Dung
    Luis Garcia, Jose
    COLLOQUIUM MATHEMATICUM, 2009, 114 (02) : 155 - 176
  • [9] Quasi-Euclidean duo rings with elementary reduction of matrices
    Romaniv, O.
    Sagan, A.
    ALGEBRA & DISCRETE MATHEMATICS, 2015, 20 (02): : 317 - 324
  • [10] LOCALLY FINITELY GENERATED MODULES OVER RINGS WITH ENOUGH IDEMPOTENTS
    Angeleri Hugel, Lidia
    Antonio De La Pena, Jose
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2009, 8 (06) : 885 - 901