Determination of Physical Properties and Thermal Conductivity of Graphite Foam with Image Analysis

被引:0
|
作者
Amir Mohammadimehr
İsmail Solmus
Baris Ozyer
D. Andrew S. Rees
机构
[1] Ataturk University,Department of Mechanical Engineering
[2] Ataturk University,Department of Computer Engineering
[3] University of Bath,Department of Mechanical Engineering
来源
关键词
3D reconstruction; Effective thermal conductivity; Graphite foam; Image analysis; Porosity; Specific surface area;
D O I
暂无
中图分类号
学科分类号
摘要
Since pore network structures of porous materials have irregular shapes and may vary in size, the accurate characterization and virtual 3D reconstruction of these materials are of great importance for a deeper understanding of the structure and subsequent calculations. In this study, the scanning electron microscope (SEM) and X-ray microcomputed tomography (µCT) images of a graphite foam sample are used for image analysis method (IAM) and virtual 3D reconstruction as non-destructive scientific tools with high accuracy. The morphological characterization and determination of effective pore diameter, porosity, specific surface area (SSA), and effective thermal conductivity (ETC) of POCO graphite foam are investigated. By examining the results obtained from the method of image analysis, it is found that there is a good agreement among the IAM results.
引用
收藏
相关论文
共 50 条
  • [1] Determination of Physical Properties and Thermal Conductivity of Graphite Foam with Image Analysis
    Mohammadimehr, Amir
    Solmus, Ismail
    Ozyer, Baris
    Rees, D. Andrew S.
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2020, 41 (04)
  • [2] Image based in silico characterisation of the effective thermal properties of a graphite foam
    Evans, Ll M.
    Margetts, L.
    Le, P. D.
    Butler, C. A. M.
    Surrey, E.
    CARBON, 2019, 143 : 542 - 558
  • [3] Determination of the thermal conductivity of foam aluminum
    A. N. Abramenko
    A. S. Kalinichenko
    Y. Burtser
    V. A. Kalinichenko
    S. A. Tanaeva
    I. P. Vasilenko
    Journal of Engineering Physics and Thermophysics, 1999, 72 (3) : 369 - 373
  • [4] Fractal model for thermal conductivity of a new material of graphite foam
    College of Power Engineering, Chongqing University, Chongqing 400030, China
    Kung Cheng Je Wu Li Hsueh Pao, 2006, SUPPL. 1 (82-84):
  • [5] Determination of the thermal conductivity of periodic APM foam models
    Fiedler, T.
    Sulong, M. A.
    Vesenjak, M.
    Higa, Y.
    Belova, I. V.
    Oechsner, A.
    Murch, G. E.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2014, 73 : 826 - 833
  • [6] Thermal conductivity improvement of phase change materials/graphite foam composites
    Sedeh, Mahmoud Moeini
    Khodadadi, J. M.
    CARBON, 2013, 60 : 117 - 128
  • [7] Study of Microstructure-Based Effective Thermal Conductivity of Graphite Foam
    Chai, Y.
    Yang, X. H.
    Zhao, M.
    Chen, Z. Y.
    Meng, X. Z.
    Jin, L. W.
    Zhang, Q. L.
    Hu, W. J.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2017, 139 (05):
  • [8] Thermal conductivity and mechanical properties of expanded graphite
    Afanasov, I. M.
    Savchenko, D. V.
    Ionov, S. G.
    Rusakov, D. A.
    Seleznev, A. N.
    Avdeev, V. V.
    INORGANIC MATERIALS, 2009, 45 (05) : 486 - 490
  • [9] Supercooling suppression and thermal conductivity enhancement of erythritol using graphite foam with ultrahigh thermal conductivity for thermal energy storage
    Wei, Chongyang
    Li, Yi
    Song, Jinliang
    Cheng, Jinxing
    Tang, Zhongfeng
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2024, 153
  • [10] Thermal conductivity and mechanical properties of expanded graphite
    I. M. Afanasov
    D. V. Savchenko
    S. G. Ionov
    D. A. Rusakov
    A. N. Seleznev
    V. V. Avdeev
    Inorganic Materials, 2009, 45 : 486 - 490