Modelling elongational viscosity overshoot and brittle fracture of low-density polyethylene melts

被引:0
|
作者
Manfred H. Wagner
Esmaeil Narimissa
Leslie Poh
Qian Huang
机构
[1] Berlin Institute of Technology (TU Berlin),Polymer Engineering/Polymer Physics
[2] Technion–Israel Institute of Technology (IIT),Department of Chemical Engineering
[3] Technion City,Department of Chemical Engineering
[4] Guangdong Technion–Israel Institute of Technology (GTIIT),State Key Laboratory of Polymer Materials Engineering
[5] Polymer Research Institute,undefined
[6] Sichuan University,undefined
来源
Rheologica Acta | 2022年 / 61卷
关键词
Low-density polyethylene; HMMSF model; Elongational viscosity; Viscosity overshoot; Branch point withdrawal; Brittle fracture;
D O I
暂无
中图分类号
学科分类号
摘要
The Hierarchical Multi-mode Molecular Stress Function (HMMSF) model predicts the elongational and multiaxial extensional viscosities of polydisperse linear polymer melts based exclusively on their linear viscoelastic characterization and a single nonlinear material parameter, the so-called dilution modulus GD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${G}_{D}$$\end{document}. For long-chain branched (LCB) polymer melts such as low-density polyethylene (LDPE), the HMMSF model describes quantitatively the elongational stress growth coefficient up to the maximum of the elongational viscosity but fails to predict the existence of the maximum and the following steady-state viscosity. By taking into account branch point withdrawal in elongational flow of LCB melts, we extend the HMMSF model and show that the maximum of the elongational viscosity can be characterized by a single additional parameter, the characteristic stretch λ¯m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\lambda }}_{m}$$\end{document}, while the steady-state tensile stress and the elongational viscosity depend only on the dilution modulus GD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${G}_{D}$$\end{document} as in the case of linear polydisperse melts. Comparison of predictions of the Extended Hierarchical Multi-mode Molecular Stress Function (EHMMSF) model to experimental data of 5 LDPE melts with widely different molecular weights, polydispersities and densities, and a model polystyrene pom-pom polymer shows good agreement within experimental accuracy in constant elongational-rate flow as well as stress relaxation after steady and reversed elongational flow. For the LCB melts considered, we report differences in the specific Hencky strain at the maximum of the tensile stress as quantified by the characteristic stretch λ¯m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\lambda }}_{m}$$\end{document}, and we discuss correlations between polydispersity, dilution modulus GD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${G}_{D}$$\end{document}, and strain hardening potential of the LDPE melts. We also extend the fracture criterion for brittle fracture of monodisperse polymer melts to the case of polydisperse polymers and find reasonable agreement with experimental evidence.
引用
收藏
页码:281 / 298
页数:17
相关论文
共 50 条
  • [1] Modelling elongational viscosity overshoot and brittle fracture of low-density polyethylene melts
    Wagner, Manfred H.
    Narimissa, Esmaeil
    Poh, Leslie
    Huang, Qian
    RHEOLOGICA ACTA, 2022, 61 (4-5) : 281 - 298
  • [2] Fracture in elongational flow of two low-density polyethylene melts
    Leslie Poh
    Qi Wu
    Zhengbin Pan
    Manfred H. Wagner
    Esmaeil Narimissa
    Rheologica Acta, 2023, 62 : 317 - 331
  • [3] Fracture in elongational flow of two low-density polyethylene melts
    Poh, Leslie
    Wu, Qi
    Pan, Zhengbin
    Wagner, Manfred H.
    Narimissa, Esmaeil
    RHEOLOGICA ACTA, 2023, 62 (5-6) : 317 - 331
  • [4] Viscosity overshoot in the start-up of uniaxial elongation of low density polyethylene melts
    Rasmussen, HK
    Nielsen, JK
    Bach, A
    Hassager, O
    JOURNAL OF RHEOLOGY, 2005, 49 (02) : 369 - 381
  • [5] ELONGATION VISCOSITY ESTIMATES OF LINEAR LOW-DENSITY POLYETHYLENE LOW-DENSITY POLYETHYLENE BLENDS
    TREMBLAY, B
    POLYMER ENGINEERING AND SCIENCE, 1992, 32 (01): : 65 - 72
  • [6] Shear and elongational flow properties of peroxide-modified wood/low-density polyethylene composite melts
    Harnnarongchai, Wanlop
    Kaschta, Joachim
    Schubert, Dirk W.
    Sombatsompop, Narongrit
    POLYMER COMPOSITES, 2012, 33 (11) : 2084 - 2094
  • [7] On the "viscosity overshoot" during the uniaxial extension of a low density polyethylene
    Burghelea, Teodor I.
    Stary, Zdenek
    Muenstedt, Helmut
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2011, 166 (19-20) : 1198 - 1209
  • [8] Modeling elongational viscosity and brittle fracture of polystyrene solutions
    Wagner, Manfred H.
    Narimissa, Esmaeil
    Poh, Leslie
    Shahid, Taisir
    RHEOLOGICA ACTA, 2021, 60 (08) : 385 - 396
  • [9] Shear modification and elongational behavior of two types of low-density polyethylene melts with different long chain branching
    Okamoto, Kenzo
    Yamaguchi, Masayuki
    Takahashi, Masaoki
    XVTH INTERNATIONAL CONGRESS ON RHEOLOGY - THE SOCIETY OF RHEOLOGY 80TH ANNUAL MEETING, PTS 1 AND 2, 2008, 1027 : 454 - +
  • [10] Modeling elongational viscosity and brittle fracture of polystyrene solutions
    Manfred H. Wagner
    Esmaeil Narimissa
    Leslie Poh
    Taisir Shahid
    Rheologica Acta, 2021, 60 : 385 - 396