Modified globally convergent Polak-Ribière-Polyak conjugate gradient methods with self-correcting property for large-scale unconstrained optimization

被引:0
|
作者
Xiaoliang Dong
机构
[1] Xi’an Shiyou University,College of Science
[2] Nanjing Normal University,School of Mathematics Science
来源
Numerical Algorithms | 2023年 / 93卷
关键词
Conjugate gradient method; Self-correcting property; Sufficient descent condition; Global convergence; 90C30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a modified Polak-Ribière-Polyak conjugate gradient method. Different from the existent methods, a damping factor is introduced to monitor jamming and make instantaneous changes to incorrect predictions, and the resulting damping term is significantly embedded into the conjugate gradient parameter to self-adjust weight between self-correcting property and global convergence. A bigger value is preferred to control the magnitude of conjugate gradient parameter being less than that of the Fletcher-Reeves method, which is a benefit to sufficient descent condition of the search directions; also, to a certain, a dramatically shrinking value makes the parameter above to approximate instantaneously that of the Polak-Ribière-Polyak method, which stimulates the return of restarting mechanism. Under mild conditions, we show that the proposed methods converge globally. Numerical experiments support the theoretical result.
引用
收藏
页码:765 / 783
页数:18
相关论文
共 31 条
  • [1] Modified globally convergent Polak-Ribiere-Polyak conjugate gradient methods with self-correcting property for large-scale unconstrained optimization
    Dong, Xiaoliang
    NUMERICAL ALGORITHMS, 2023, 93 (02) : 765 - 783
  • [2] Three modified Polak-Ribière-Polyak conjugate gradient methods with sufficient descent property
    Min Sun
    Jing Liu
    Journal of Inequalities and Applications, 2015
  • [3] A modified Polak-Ribière-Polyak type conjugate gradient method for vector optimization
    Hu, Qingjie
    Zhang, Yanyan
    Li, Ruyun
    Zhu, Zhibin
    OPTIMIZATION METHODS & SOFTWARE, 2025,
  • [4] A Conjugate Gradient Method: Quantum Spectral Polak-Ribiére-Polyak Approach for Unconstrained Optimization Problems
    Lai, Kin Keung
    Mishra, Shashi Kant
    Ram, Bhagwat
    Sharma, Ravina
    MATHEMATICS, 2023, 11 (23)
  • [5] A hybridization of the Polak-Ribière-Polyak and Fletcher-Reeves conjugate gradient methods
    Saman Babaie-Kafaki
    Reza Ghanbari
    Numerical Algorithms, 2015, 68 : 481 - 495
  • [6] An Active Set Modified Polak-Ribi,re-Polyak Method for Large-Scale Nonlinear Bound Constrained Optimization
    Cheng, Wanyou
    Li, Donghui
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 155 (03) : 1084 - 1094
  • [7] A globally convergent version of the Polak-Ribière conjugate gradient method
    L. Grippo
    S. Lucidi
    Mathematical Programming, 1997, 78 : 375 - 391
  • [8] An explicit three-term Polak-Ribière-Polyak conjugate gradient method for bicriteria optimization
    Elboulqe, Y.
    El Maghri, M.
    OPERATIONS RESEARCH LETTERS, 2024, 57
  • [9] A new family of Polak-Ribière-Polyak conjugate gradient method for impulse noise removal
    Mousavi, Ali
    Esmaeilpour, Mansour
    Sheikhahmadi, Amir
    SOFT COMPUTING, 2023, 27 (23) : 17515 - 17524
  • [10] Modification of the Wolfe Line Search Rules to Satisfy the Descent Condition in the Polak-Ribière-Polyak Conjugate Gradient Method
    P. Armand
    Journal of Optimization Theory and Applications, 2007, 132 : 287 - 305