Geometry of quasiminimal phase transitions

被引:0
|
作者
Alberto Farina
Enrico Valdinoci
机构
[1] Université de Picardie Jules Verne,Faculté de Mathématiques et d’Informatique, LAMFA, CNRS UMR 6140
[2] Università di Roma Tor Vergata,Dipartimento di Matematica
关键词
35J20; 35J60; 35J70; 49K20;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the quasiminima of the energy functional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int \limits_\Omega A(x, \nabla u) + F(x, u)\,dx,$$\end{document}where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A(x, \nabla u) \sim |\nabla u|^p$$\end{document} and F is a double-well potential. We show that the Lipschitz quasiminima, which satisfy an equipartition of energy condition, possess density estimates of Caffarelli–Cordoba-type, that is, roughly speaking, the complement of their interfaces occupies a positive density portion of balls of large radii. From this, it follows that the level sets of the rescaled quasiminima approach locally uniformly hypersurfaces of quasiminimal perimeter. If the quasiminimum is also a solution of the associated PDE, the limit hypersurface is shown to have zero mean curvature and a quantitative viscosity bound on the mean curvature of the level sets is given. In such a case, some Harnack-type inequalities for level sets are obtained and then, if the limit surface if flat, so are the level sets of the solution.
引用
收藏
页码:1 / 35
页数:34
相关论文
共 50 条
  • [1] Geometry of quasiminimal phase transitions
    Farina, Alberto
    Valdinoci, Enrico
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (01) : 1 - 35
  • [2] Geometry of quantum phase transitions
    Carollo, Angelo
    Valenti, Davide
    Spagnolo, Bernardo
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2020, 838 : 1 - 72
  • [3] Information geometry and phase transitions
    Portesi, Mariela
    Plastino, Angel L.
    Pennini, Flavia
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2006, 20 (30-31): : 5250 - 5253
  • [4] Geometry of dynamics and phase transitions
    Caiani, L
    Clementi, C
    Casetti, L
    [J]. PHYSICS OF COMPLEX SYSTEMS, 1997, 134 : 623 - 630
  • [5] Information geometry and phase transitions
    Portesi, Mariela
    Plastino, Angel L.
    Pennini, Flavia
    [J]. RECENT PROGRESS IN MANY-BODY THEORIES, PROCEEDINGS, 2006, 10 : 293 - +
  • [6] Information geometry and phase transitions
    Janke, W
    Johnston, DA
    Kenna, R
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 336 (1-2) : 181 - 186
  • [7] Information Geometry in the Analysis of Phase Transitions
    Mera, B.
    [J]. ACTA PHYSICA POLONICA A, 2019, 135 (06) : 1171 - 1179
  • [8] Simulations of phase transitions in confined geometry
    Landau, DP
    [J]. COMPUTER SIMULATIONS OF SURFACES AND INTERFACES, 2003, 114 : 261 - 271
  • [9] PHASE-TRANSITIONS IN REDUCED GEOMETRY
    BINDER, K
    [J]. ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1992, 43 : 33 - 59
  • [10] Phase transitions in model colloids in reduced geometry
    Strepp, W
    Sengupta, S
    Lohrer, M
    Nielaba, P
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2003, 62 (3-6) : 519 - 527