The Linear Stability of Shock Waves for the Nonlinear Schrödinger–Inviscid Burgers System

被引:0
|
作者
Paulo Amorim
João-Paulo Dias
Mário Figueira
Philippe G. LeFloch
机构
[1] Universidade de Lisboa,Centro de Matemática e Aplicações Fundamentais
[2] Université Pierre et Marie Curie (Paris 6),Laboratoire Jacques–Louis Lions & Centre National de la Recherche Scientifique
关键词
Schrödinger–Burgers system; Nonlinear Schrödinger equation; Shock wave; Linear stability;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the coupling between the nonlinear Schrödinger equation and the inviscid Burgers equation, a system which models interactions between short and long waves, for instance in fluids. Well-posedness for the associated Cauchy problem remains a difficult open problem, and we tackle it here via a linearization technique. Namely, we establish a linearized stability theorem for the Schrödinger–Burgers system, when the reference solution is an entropy-satisfying shock wave to Burgers equation. Our proof is based on suitable energy estimates and on properties of hyperbolic equations with discontinuous coefficients. Numerical experiments support and expand our theoretical results.
引用
收藏
页码:49 / 69
页数:20
相关论文
共 50 条
  • [1] The Linear Stability of Shock Waves for the Nonlinear Schrodinger-Inviscid Burgers System
    Amorim, Paulo
    Dias, Joao-Paulo
    Figueira, Mario
    LeFloch, Philippe G.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2013, 25 (01) : 49 - 69
  • [2] EXISTENCE AND STABILITY OF STANDING WAVES FOR A COUPLED NONLINEAR SCHRDINGER SYSTEM
    曾小雨
    张贻民
    周焕松
    Acta Mathematica Scientia(English Series), 2015, 35 (01) : 45 - 70
  • [3] Asymptotic stability of standing waves for the coupled nonlinear Schrödinger system
    Yang Liao
    Quanbao Sun
    Xin Zhao
    Ming Cheng
    Boundary Value Problems, 2015
  • [4] EXISTENCE AND STABILITY OF STANDING WAVES FOR A COUPLED NONLINEAR SCHRDINGER SYSTEM
    曾小雨
    张贻民
    周焕松
    Acta Mathematica Scientia, 2015, 35 (01) : 45 - 70
  • [5] Relativistic Burgers and nonlinear SchrÖdinger equations
    O. K. Pashaev
    Theoretical and Mathematical Physics, 2009, 160 : 1022 - 1030
  • [6] Orbital stability of periodic waves for the nonlinear Schrödinger equation
    Thierry Gallay
    Mariana Hǎrǎgus
    Journal of Dynamics and Differential Equations, 2007, 19 : 825 - 865
  • [7] Stability of Standing Waves for the Nonlinear Fractional Schrödinger Equation
    Jian Zhang
    Shihui Zhu
    Journal of Dynamics and Differential Equations, 2017, 29 : 1017 - 1030
  • [8] On energy stability for the coupled nonlinear Schrödinger system
    Li Ma
    Lin Zhao
    Zeitschrift für angewandte Mathematik und Physik, 2009, 60 : 774 - 784
  • [9] Standing waves for a coupled system of nonlinear Schrödinger equations
    Zhijie Chen
    Wenming Zou
    Annali di Matematica Pura ed Applicata (1923 -), 2015, 194 : 183 - 220
  • [10] Traveling waves for a nonlinear Schrödinger system with quadratic interaction
    Noriyoshi Fukaya
    Masayuki Hayashi
    Takahisa Inui
    Mathematische Annalen, 2024, 388 : 1357 - 1378