Estimation of the Mean Thermal Conductivity of Anisotropic Materials

被引:0
|
作者
T. Ohmura
M. Tsuboi
T. Tomimura
机构
[1] Nichias Corporation,Research and Development Department, Hamamatsu Research Center
[2] Kyushu University,Institute of Advanced Material Study
来源
关键词
alumina silicate; anisotropic material; cyclic heat method; rock wool; thermal conductivity; transient hot-wire method;
D O I
暂无
中图分类号
学科分类号
摘要
An estimation method of the plane directional thermal conductivity of fibrous insulations using the cyclic heat method and the transient hot-wire method is proposed. By assuming that the thermal conductivity λh of anisotropic materials measured by the transient hot-wire method is equivalent to that of the isotropic materials which have the same bulk density ρ and specific heat c as the anisotropic materials, the thermal conductivity λh is shown to be equal to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt {\lambda _x \lambda _y } $$ \end{document}, which is a geometrical mean of the thermal conductivities in the direction of the plane λx and the thickness λy of the anisotropic materials. For an alumina silica blanket (ρ=125 kg·m−3), the thermal conductivities λh, λx, and λy were measured in the temperature range between −140 and 300°C using the transient hot-wire method for λh and the cyclic heat method for λx and λy. In the same way, the thermal conductivities λh, λx, and λy of a rock wool (ρ=121 kg·m−3) insulation were also measured in the temperature range, 100 to 600°C. From a comparison of the measured results with the estimated values of λx, it is confirmed that the proposed method can estimate the measured values reasonably well.
引用
收藏
页码:843 / 853
页数:10
相关论文
共 50 条
  • [1] Estimation of the mean thermal conductivity of anisotropic materials
    Ohmura, T
    Tsuboi, M
    Tomimura, T
    [J]. INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2002, 23 (03) : 843 - 853
  • [2] THERMAL CONDUCTIVITY OF ANISOTROPIC MATERIALS
    FREILING, J
    ECKERT, RE
    WESTWATER, JW
    [J]. INDUSTRIAL AND ENGINEERING CHEMISTRY, 1952, 44 (04): : 906 - 910
  • [3] MEASUREMENTS OF THERMAL CONDUCTIVITY OF POROUS ANISOTROPIC MATERIALS
    TEWFIK, OE
    [J]. AIAA JOURNAL, 1963, 1 (04) : 919 - 921
  • [4] Overview of thermal conductivity models of anisotropic thermal insulation materials
    Skurikhin, A. V.
    Kostanovsky, A. V.
    [J]. INTERNATIONAL CONFERENCE PROBLEMS OF THERMAL PHYSICS AND POWER ENGINEERING (PTPPE-2017), 2017, 891
  • [5] An efficient computational method for anisotropic thermal conductivity estimation
    Cruz-Duarte, Jorge M.
    Avina-Cervantes, Juan Gabriel
    Correa, Rodrigo
    [J]. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2022, 147 (24) : 14829 - 14839
  • [6] An efficient computational method for anisotropic thermal conductivity estimation
    Jorge M. Cruz-Duarte
    Juan Gabriel Avina-Cervantes
    Rodrigo Correa
    [J]. Journal of Thermal Analysis and Calorimetry, 2022, 147 : 14829 - 14839
  • [7] High Thermal Conductivity in Anisotropic Aligned Polymeric Materials
    Pan, Xinglong
    Debije, Michael G.
    Schenning, Albert P. H. J.
    [J]. ACS APPLIED POLYMER MATERIALS, 2021, 3 (02): : 578 - 587
  • [8] Materials with constant anisotropic conductivity as a thermal cloak or concentrator
    Chen, Tungyang
    Weng, Chung-Ning
    Tsai, Yu-Lin
    [J]. JOURNAL OF APPLIED PHYSICS, 2015, 117 (05)
  • [9] A noncontact method for measuring thermal conductivity and thermal diffusivity of anisotropic materials
    Fujii, M
    Park, SC
    Tomimura, T
    Zhang, X
    [J]. INTERNATIONAL JOURNAL OF THERMOPHYSICS, 1997, 18 (01) : 251 - 267
  • [10] A noncontact method for measuring thermal conductivity and thermal diffusivity of anisotropic materials
    M. Fujii
    S. C. Park
    T. Tomimura
    X. Zhang
    [J]. International Journal of Thermophysics, 1997, 18 : 251 - 267