An improved lightweight and real-time YOLOv5 network for detection of surface defects on indocalamus leaves

被引:0
|
作者
Zhe Tang
Lin Zhou
Fang Qi
Huarong Chen
机构
[1] Central South University,School of Computer Science and Engineering
[2] Changsha Xiangfeng Intelligent Equipment Co.,undefined
[3] Ltd.,undefined
来源
关键词
Attention mechanism; Defect detection; Feature pyramid network; Multi-scale object; YOLOv5;
D O I
暂无
中图分类号
学科分类号
摘要
Indocalamus leaves are widely used in the Chinese food industry. Surface defect detection plays a crucial role in the post-harvest reprocessing of indocalamus leaves. In this study, we constructed a lightweight convolutional neural network model to detect surface defects on indocalamus leaves. We investigated four categories of surface defects, including damage, black spots, insect spots, and holes, to construct a dataset of surface defects on indocalamus leaves, which contained 4124 images for model training and evaluation. We replaced the original path aggregation network (PANet) in YOLOv5 with a cross-layer feature pyramid network (CFPN), which improved the detection performance by fusing feature maps at different levels. We proposed an improved feature fusion module, named the receptive dilated and deformable convolution field block (RDDCFB), which was integrated into the CFPN for learning within larger spatial and semantic contexts. Furthermore, a new CA mechanism was proposed to improve the feature representation capability of the network by appropriately adjusting the structure of the coordinate attention (CA) mechanism. Extensive experiments using the Pascal VOC and CIFAR-100 datasets demonstrated that this new CA block had superior accuracy and integration capabilities. On MSCOCO2017 validation datasets, experiments show that our module is consistently better than various detectors, including Faster R-CNN, YOLOv3, and YOLOv4. Finally, our quantitative results from the dataset of surface defects on indocalamus leaves indicated the effectiveness of the proposed method. The accuracy and recognition efficiency of the improved YOLOv5 model could reach 97.7% and 97 frames per second, respectively.
引用
收藏
相关论文
共 50 条
  • [1] An improved lightweight and real-time YOLOv5 network for detection of surface defects on indocalamus leaves
    Tang, Zhe
    Zhou, Lin
    Qi, Fang
    Chen, Huarong
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2023, 20 (01)
  • [2] YOLOv5-R: lightweight real-time detection based on improved YOLOv5
    Ren, Jian
    Wang, Zhijie
    Zhang, Yifan
    Liao, Lei
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (03)
  • [3] Real-time detection of particleboard surface defects based on improved YOLOV5 target detection
    Zhao, Ziyu
    Yang, Xiaoxia
    Zhou, Yucheng
    Sun, Qinqian
    Ge, Zhedong
    Liu, Dongfang
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [4] Real-time detection of particleboard surface defects based on improved YOLOV5 target detection
    Ziyu Zhao
    Xiaoxia Yang
    Yucheng Zhou
    Qinqian Sun
    Zhedong Ge
    Dongfang Liu
    Scientific Reports, 11
  • [5] Detection of Surface Defects in Lightweight Insulators Using Improved YOLOv5
    Guo Yu
    Ma Meiling
    Li Dalin
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (24)
  • [6] A Real-Time Green and Lightweight Model for Detection of Liquefied Petroleum Gas Cylinder Surface Defects Based on YOLOv5
    Duman, Burhan
    APPLIED SCIENCES-BASEL, 2025, 15 (01):
  • [7] TIA-YOLOv5: An improved YOLOv5 network for real-time detection of crop and weed in the field
    Wang, Aichen
    Peng, Tao
    Cao, Huadong
    Xu, Yifei
    Wei, Xinhua
    Cui, Bingbo
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [8] Real-time and effective detection of agricultural pest using an improved YOLOv5 network
    Qi, Fang
    Wang, Yuxiang
    Tang, Zhe
    Chen, Shuhong
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2023, 20 (02)
  • [9] Real-time and effective detection of agricultural pest using an improved YOLOv5 network
    Fang Qi
    Yuxiang Wang
    Zhe Tang
    Shuhong Chen
    Journal of Real-Time Image Processing, 2023, 20
  • [10] A Real-Time Detection Algorithm for Kiwifruit Defects Based on YOLOv5
    Yao, Jia
    Qi, Jiaming
    Zhang, Jie
    Shao, Hongmin
    Yang, Jia
    Li, Xin
    ELECTRONICS, 2021, 10 (14)