The precise bound for the area–length ratio in Ahlfors’ theory of covering surfaces

被引:2
|
作者
Guang Yuan Zhang
机构
[1] Tsinghua University,Department of Mathematical Sciences
来源
Inventiones mathematicae | 2013年 / 191卷
关键词
Covering surface; Value distribution; Isoperimetric inequality; Spherical geometry; 30D20; 30D35; 30D45; 51M25;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S=\overline{\mathbb{C}}$\end{document} be the unit Riemann sphere. A basic consequence of Ahlfors’ theory of covering surfaces is that there exists a positive constant h such that for any simply-connected surface Σ over S∗=S∖{0,1,∞}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A(\varSigma)\leq hL(\partial\varSigma).$$\end{document} Here A(Σ) is the area of Σ and L(∂Σ) is the length of the boundary of Σ. The goal of this paper is to prove that the least possible value of h is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_{0}=\max_{\theta\in\lbrack0,\pi/2]} \biggl[ \frac{ ( \pi+\theta ) \sqrt{1+\sin^{2}\theta}}{\arctan\frac{\sqrt{1+\sin^{2}\theta}}{\cos\theta}}-\sin\theta \biggr] =4.03415979051\ldots $$\end{document}
引用
收藏
页码:197 / 253
页数:56
相关论文
共 50 条
  • [1] The precise bound for the area-length ratio in Ahlfors' theory of covering surfaces
    Zhang, Guang Yuan
    INVENTIONES MATHEMATICAE, 2013, 191 (01) : 197 - 253
  • [3] THE PROPERTIES OF EXTREMAL SURFACES IN AHLFORS' THEORY OF COVERING SURFACES
    Sun, Zonghan
    Zhang, Guangyuan
    HOUSTON JOURNAL OF MATHEMATICS, 2019, 45 (02): : 469 - 495
  • [4] Branch values in Ahlfors’ theory of covering surfaces
    Zonghan Sun
    Guangyuan Zhang
    Science China Mathematics, 2020, 63 : 1535 - 1558
  • [5] Branch values in Ahlfors' theory of covering surfaces
    Sun, Zonghan
    Zhang, Guangyuan
    SCIENCE CHINA-MATHEMATICS, 2020, 63 (08) : 1535 - 1558
  • [6] Branch values in Ahlfors' theory of covering surfaces
    Zonghan Sun
    Guangyuan Zhang
    Science China Mathematics, 2020, (08) : 1535 - 1558
  • [7] Movement of Branch Points in Ahlfors' Theory of Covering Surfaces
    Chen, Yunling
    Lin, Tianrun
    Zhang, Guangyuan
    FRONTIERS OF MATHEMATICS, 2025,
  • [8] Deficient rational functions and Ahlfors's theory of covering surfaces
    Sauer, A
    ARKIV FOR MATEMATIK, 2001, 39 (01): : 151 - 155
  • [9] Properties of Ahlfors constant in Ahlfors covering surface theory
    Wennan Li
    Zonghan Sun
    Guangyuan Zhang
    Frontiers of Mathematics in China, 2021, 16 : 957 - 977
  • [10] Properties of Ahlfors constant in Ahlfors covering surface theory
    Li, Wennan
    Sun, Zonghan
    Zhang, Guangyuan
    FRONTIERS OF MATHEMATICS IN CHINA, 2021, 16 (04) : 957 - 977