Spatially aware clustering of ion images in mass spectrometry imaging data using deep learning

被引:0
|
作者
Wanqiu Zhang
Marc Claesen
Thomas Moerman
M. Reid Groseclose
Etienne Waelkens
Bart De Moor
Nico Verbeeck
机构
[1] STADIUS Center for Dynamical Systems,KU Leuven, Department of Electrical Engineering (ESAT)
[2] Signal Processing and Data Analytics,undefined
[3] Aspect Analytics NV,undefined
[4] Bioimaging,undefined
[5] GlaxoSmithKline,undefined
[6] KU Leuven,undefined
[7] Department of Cellular and Molecular Medicine,undefined
来源
Analytical and Bioanalytical Chemistry | 2021年 / 413卷
关键词
Mass spectrometry imaging; Ion image clustering; Deep learning; Unsupervised learning; Representation learning; Spatial pattern recognition;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:2803 / 2819
页数:16
相关论文
共 50 条
  • [1] Spatially aware clustering of ion images in mass spectrometry imaging data using deep learning
    Zhang, Wanqiu
    Claesen, Marc
    Moerman, Thomas
    Groseclose, M. Reid
    Waelkens, Etienne
    De Moor, Bart
    Verbeeck, Nico
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2021, 413 (10) : 2803 - 2819
  • [2] Spatial segmentation and feature selection for desi imaging mass spectrometry data with spatially-aware sparse clustering
    Kyle D Bemis
    Livia Eberlin
    Christina Ferreira
    R Graham Cooks
    Olga Vitek
    BMC Bioinformatics, 13 (Suppl 18)
  • [3] Efficient spatial segmentation of large imaging mass spectrometry datasets with spatially aware clustering
    Alexandrov, Theodore
    Kobarg, Jan Hendrik
    BIOINFORMATICS, 2011, 27 (13) : I230 - I238
  • [4] Self-supervised clustering of mass spectrometry imaging data using contrastive learning
    Hu, Hang
    Bindu, Jyothsna Padmakumar
    Laskin, Julia
    CHEMICAL SCIENCE, 2021, 13 (01) : 90 - 98
  • [5] DeepION: A Deep Learning-Based Low-Dimensional Representation Model of Ion Images for Mass Spectrometry Imaging
    Guo, Lei
    Xie, Chengyi
    Miao, Rui
    Xu, Jingjing
    Xu, Xiangnan
    Fang, Jiacheng
    Wang, Xiaoxiao
    Liu, Wuping
    Liao, Xiangwen
    Wang, Jianing
    Dong, Jiyang
    Cai, Zongwei
    ANALYTICAL CHEMISTRY, 2024, 96 (09) : 3829 - 3836
  • [6] Research progress of deep learning applications in mass spectrometry imaging data analysis
    Huang, Dongdong
    Liu, Xinyu
    Xu, Guowang
    CHINESE JOURNAL OF CHROMATOGRAPHY, 2024, 42 (07) : 669 - 680
  • [7] massNet: integrated processing and classification of spatially resolved mass spectrometry data using deep learning for rapid tumor delineation
    Abdelmoula, Walid M.
    Stopka, Sylwia A.
    Randall, Elizabeth C.
    Regan, Michael
    Agar, Jeffrey N.
    Sarkaria, Jann N.
    Wells, William M.
    Kapur, Tina
    Agar, Nathalie Y. R.
    BIOINFORMATICS, 2022, 38 (07) : 2015 - 2021
  • [8] Analysis and Interpretation of Imaging Mass Spectrometry Data by Clustering Mass-to-Charge Images According to Their Spatial Similarity
    Aexandrov, Theodore
    Chernyavsky, Ilya
    Becker, Michael
    von Eggeling, Ferdinand
    Nikolenkov, Sergey
    ANALYTICAL CHEMISTRY, 2013, 85 (23) : 11189 - 11195
  • [9] On the feasibility of deep learning applications using raw mass spectrometry data
    Cadow, Joris
    Manica, Matteo
    Mathis, Roland
    Guo, Tiannan
    Aebersold, Ruedi
    Martinez, Maria Rodriguez
    BIOINFORMATICS, 2021, 37 : I245 - I253
  • [10] Deep learning for tumor classification in imaging mass spectrometry
    Behrmann, Jens
    Etmann, Christian
    Boskamp, Tobias
    Casadonte, Rita
    Kriegsmann, Joerg
    Maass, Peter
    BIOINFORMATICS, 2018, 34 (07) : 1215 - 1223