The Insulated Conductivity Problem with p-Laplacian
被引:0
|
作者:
Hongjie Dong
论文数: 0引用数: 0
h-index: 0
机构:Brown University,Division of Applied Mathematics
Hongjie Dong
Zhuolun Yang
论文数: 0引用数: 0
h-index: 0
机构:Brown University,Division of Applied Mathematics
Zhuolun Yang
Hanye Zhu
论文数: 0引用数: 0
h-index: 0
机构:Brown University,Division of Applied Mathematics
Hanye Zhu
机构:
[1] Brown University,Division of Applied Mathematics
[2] Brown University,Institute for Computational and Experimental Research in Mathematics
来源:
Archive for Rational Mechanics and Analysis
|
2023年
/
247卷
关键词:
35J92;
35Q74;
74E30;
74G70;
78A48;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We study the insulated conductivity problem with closely spaced insulators embedded in a homogeneous matrix where the current-electric field relation is the power law J=|E|p-2E\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$J = |E|^{p-2}E$$\end{document}. The gradient of solutions may blow up as ε\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varepsilon $$\end{document}, the distance between insulators, approaches to 0. We prove an upper bound of the gradient to be of order ε-α\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varepsilon ^{-\alpha }$$\end{document}, where α=1/2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha = 1/2$$\end{document} when p∈(1,n+1]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p \in (1,n+1]$$\end{document} and any α>n/(2(p-1))\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha > n/(2(p-1))$$\end{document} when p>n+1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p > n + 1$$\end{document}. We provide examples to show that this exponent is almost optimal in 2D. Additionally, in dimensions n≧3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n \geqq 3$$\end{document}, for any p>1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p > 1$$\end{document}, we prove another upper bound of order ε-1/2+β\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varepsilon ^{-1/2 + \beta }$$\end{document} for some β>0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta > 0$$\end{document}, and show that β↗1/2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta \nearrow 1/2$$\end{document} as n→∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n \rightarrow \infty $$\end{document}.
机构:
Brown Univ, Div Appl Math, 182 George St, Providence, RI 02912 USABrown Univ, Div Appl Math, 182 George St, Providence, RI 02912 USA
Dong, Hongjie
Yang, Zhuolun
论文数: 0引用数: 0
h-index: 0
机构:
Brown Univ, Inst Computat & Expt Res Math, 121 South Main St, Providence, RI 02903 USABrown Univ, Div Appl Math, 182 George St, Providence, RI 02912 USA
Yang, Zhuolun
Zhu, Hanye
论文数: 0引用数: 0
h-index: 0
机构:
Brown Univ, Div Appl Math, 182 George St, Providence, RI 02912 USABrown Univ, Div Appl Math, 182 George St, Providence, RI 02912 USA