The Insulated Conductivity Problem with p-Laplacian

被引:0
|
作者
Hongjie Dong
Zhuolun Yang
Hanye Zhu
机构
[1] Brown University,Division of Applied Mathematics
[2] Brown University,Institute for Computational and Experimental Research in Mathematics
来源
Archive for Rational Mechanics and Analysis | 2023年 / 247卷
关键词
35J92; 35Q74; 74E30; 74G70; 78A48;
D O I
暂无
中图分类号
学科分类号
摘要
We study the insulated conductivity problem with closely spaced insulators embedded in a homogeneous matrix where the current-electric field relation is the power law J=|E|p-2E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J = |E|^{p-2}E$$\end{document}. The gradient of solutions may blow up as ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}, the distance between insulators, approaches to 0. We prove an upper bound of the gradient to be of order ε-α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon ^{-\alpha }$$\end{document}, where α=1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha = 1/2$$\end{document} when p∈(1,n+1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \in (1,n+1]$$\end{document} and any α>n/(2(p-1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha > n/(2(p-1))$$\end{document} when p>n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p > n + 1$$\end{document}. We provide examples to show that this exponent is almost optimal in 2D. Additionally, in dimensions n≧3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \geqq 3$$\end{document}, for any p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p > 1$$\end{document}, we prove another upper bound of order ε-1/2+β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon ^{-1/2 + \beta }$$\end{document} for some β>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta > 0$$\end{document}, and show that β↗1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \nearrow 1/2$$\end{document} as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \rightarrow \infty $$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] The Insulated Conductivity Problem with p-Laplacian
    Dong, Hongjie
    Yang, Zhuolun
    Zhu, Hanye
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2023, 247 (05)
  • [2] Asymptotics of the solution to the perfect conductivity problem with p-Laplacian
    Dong, Hongjie
    Yang, Zhuolun
    Zhu, Hanye
    MATHEMATISCHE ANNALEN, 2024, 390 (04) : 5005 - 5051
  • [3] CALDERON PROBLEM FOR THE p-LAPLACIAN: FIRST ORDER DERIVATIVE OF CONDUCTIVITY ON THE BOUNDARY
    Brander, Tommi
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (01) : 177 - 189
  • [4] p-Laplacian problem in a Riemannian manifold
    da C. Sousa, J. Vanterler
    Mbarki, Lamine
    Tavares, Leandro S.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2025, 15 (02)
  • [5] A p-LAPLACIAN SUPERCRITICAL NEUMANN PROBLEM
    Colasuonno, Francesca
    Noris, Benedetta
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (06) : 3025 - 3057
  • [6] Eigenvalue Problem For Perturbated p-Laplacian
    Latifi, Mehdi
    Alimohammady, Mohsen
    THAI JOURNAL OF MATHEMATICS, 2022, 20 (01): : 35 - 54
  • [7] A RESONANCE PROBLEM FOR THE P-LAPLACIAN IN RN
    Izquierdo Buenrostro, Gustavo
    Lopez Garza, Gabriel
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2005,
  • [8] On Coron's problem for the p-Laplacian
    Mercuri, Carlo
    Sciunzi, Berardino
    Squassina, Marco
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 421 (01) : 362 - 369
  • [9] An eigenvalue optimization problem for the p-Laplacian
    Chorwadwala, Anisa M. H.
    Mahadevan, Rajesh
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2015, 145 (06) : 1145 - 1151