Consider the linear least squares problem minx‖b−Ax‖2 whereA is anm×n (m<n) matrix, andb is anm-dimensional vector. Lety be ann-dimensional vector, and let ηls(y) be the optimal backward perturbation bound defined by\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\eta _{LS} (y) = \inf \{ ||F||_F :y is a solution to \mathop {min}\limits_x ||b - (A + F)x||_2 \} .$$
\end{document}. An explicit expression of ηls(y) (y≠0) has been given in [8]. However, if we define the optimal backward perturbation bounds ηmls(y) by\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\eta _{MLS} (y) = \inf \{ ||F||_F :y is the minimum 2 - norm solution to \mathop {min}\limits_x ||b - (A + F)x||_2 \} ,$$
\end{document}, it may well be asked: How to derive an explicit expression of ηmls(y)? This note gives an answer. The main result is: Ifb≠0 andy≠0, then ηmls(y)=ηls (y).