Normalized Multi-peak Solutions to Nonlinear Elliptic Problems

被引:0
|
作者
Wenjing Chen
Xiaomeng Huang
机构
[1] Southwest University,School of Mathematics and Statistics
来源
关键词
Nonlinear Schrödinger equation; Lyapunov–Schmidt reduction; Normalized solution; 35J15; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we establish the existence of positive multi-peak solutions to the following elliptic problem -Δv+(λ+V(x))v=vpinΩ,v>0inΩ,∫Ωv2dx=ρ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta v+(\lambda +V(x))v=v^p \ {} &{}\text { in } \Omega ,\\ v>0 &{}\text { in }\Omega ,\\ \int _{\Omega }v^2dx=\rho , \end{array}\right. } \end{aligned}$$\end{document}where Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is a bounded smooth domain of RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N$$\end{document} or the whole space RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N$$\end{document}, the exponent p satisfies 1<p<N+2N-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<\frac{N+2}{N-2}$$\end{document} for N≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 3$$\end{document} and p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1$$\end{document} for N=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=1,2$$\end{document}. For the case of mass subcritical, mass critical, and mass supercritical, we shall deal with the effect of ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} on the existence of the solution concentrating at k different points, which belong to either ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega $$\end{document} or Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}, or RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Normalized Multi-peak Solutions to Nonlinear Elliptic Problems
    Chen, Wenjing
    Huang, Xiaomeng
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (03)
  • [2] MULTI-PEAK POSITIVE SOLUTIONS FOR A FRACTIONAL NONLINEAR ELLIPTIC EQUATION
    Shang, Xudong
    Zhang, Jihui
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (07) : 3183 - 3201
  • [3] MULTI-PEAK SOLUTIONS FOR A PLANAR ROBIN NONLINEAR ELLIPTIC PROBLEM WITH LARGE EXPONENT
    Zhang, Yibin
    Shi, Lei
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [4] Multi-peak solutions for a class of degenerate elliptic equations
    Giacomini, A
    Squassina, M
    [J]. ASYMPTOTIC ANALYSIS, 2003, 36 (02) : 115 - 147
  • [5] Multi-peak solutions for super-critical elliptic problems in domains with small holes
    del Pino, M
    Felmer, P
    Musso, M
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 182 (02) : 511 - 540
  • [6] Normalized concentrating solutions to nonlinear elliptic problems
    Pellacci, Benedetta
    Pistoia, Angela
    Vaira, Giusi
    Verzini, Gianmaria
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 275 : 882 - 919
  • [7] Multi-peak solutions for a singularly perturbed semilinear elliptic problem
    Cao, DM
    Noussair, ES
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 166 (02) : 266 - 289
  • [8] Multi-peak solutions for nonlinear Choquard equation in the plane
    Sun, Xiaomei
    Zhu, Anqiang
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (01)
  • [9] Multi-peak solutions for some singular perturbation problems
    Manuel del Pino
    Patricio L. Felmer
    Juncheng Wei
    [J]. Calculus of Variations and Partial Differential Equations, 2000, 10 : 119 - 134
  • [10] Multi-peak solutions for a class of nonlinear Schrodinger equations
    Pistoia, A
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2002, 9 (01): : 69 - 91