Best Proximity Pairs Theorems for Continuous Set-Valued Maps

被引:0
|
作者
A. Amini-Harandi
A. P. Farajzadeh
D. O'Regan
R. P. Agarwal
机构
[1] University of Shahrekord,Department of Mathematics
[2] Razi University,Department of Mathematics
[3] National University of Ireland,Department of Mathematics
[4] Florida Institute of Technology,Department of Mathematical Sciences
关键词
Differential Geometry; Computational Biology; Full Article; Publisher Note;
D O I
暂无
中图分类号
学科分类号
摘要
A best proximity pair for a set-valued map [inline-graphic not available: see fulltext] with respect to a set-valued map [inline-graphic not available: see fulltext] is defined, and a new existence theorem of best proximity pairs for continuous set-valued maps is proved in nonexpansive retract metric spaces. As an application, we derive a coincidence point theorem.
引用
收藏
相关论文
共 50 条
  • [1] Best Proximity Pairs Theorems for Continuous Set-Valued Maps
    Amini-Harandi, A.
    Farajzadeh, A. P.
    O'Regan, D.
    Agarwal, R. P.
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2008, 2008 (1)
  • [2] Best Proximity Pairs for Upper Semicontinuous Set-Valued Maps in Hyperconvex Metric Spaces
    A. Amini-Harandi
    A. P. Farajzadeh
    D. O'Regan
    R. P. Agarwal
    [J]. Fixed Point Theory and Applications, 2008
  • [3] Best Proximity Pairs for Upper Semicontinuous Set-Valued Maps in Hyperconvex Metric Spaces
    Amini-Harandi, A.
    Farajzadeh, A. P.
    O'Regan, D.
    Agarwal, R. P.
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2008, 2008 (1)
  • [4] BEST PROXIMITY PAIR AND COINCIDENCE POINT THEOREMS FOR NONEXPANSIVE SET-VALUED MAPS IN HILBERT SPACES
    Amini-Harandi, A.
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2011, 37 (04): : 229 - 234
  • [5] Coincidence Point, Best Approximation, and Best Proximity Theorems for Condensing Set-Valued Maps in Hyperconvex Metric Spaces
    A. Amini-Harandi
    A. P. Farajzadeh
    D. O'Regan
    R. P. Agarwal
    [J]. Fixed Point Theory and Applications, 2008
  • [6] Coincidence Point, Best Approximation, and Best Proximity Theorems for Condensing Set-Valued Maps in Hyperconvex Metric Spaces
    Amini-Harandi, A.
    Farajzadeh, A. P.
    O'Regan, D.
    Agarwal, R. P.
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2008, 2008 (1)
  • [7] BEST PROXIMITY POINT RESULTS FOR SET-VALUED MAPS IN METRIC SPACES
    Mirdamadi, Fahimeh
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2016, 17 (06) : 1223 - 1230
  • [8] Approximation of continuous set-valued maps by constant set-valued maps with image balls
    S. I. Dudov
    A. B. Konoplev
    [J]. Mathematical Notes, 2007, 82 : 469 - 473
  • [9] Approximation of continuous set-valued maps by constant set-valued maps with image balls
    Dudov, S. I.
    Konoplev, A. B.
    [J]. MATHEMATICAL NOTES, 2007, 82 (3-4) : 469 - 473
  • [10] Theorems of the Alternative and Optimization with Set-Valued Maps
    X. M. Yang
    X. Q. Yang
    G. Y. Chen
    [J]. Journal of Optimization Theory and Applications, 2000, 107 : 627 - 640