Improved extraction of cobalt and lithium by reductive acid from spent lithium-ion batteries via mechanical activation process

被引:0
|
作者
Yaoguang Guo
Yaguang Li
Xiaoyi Lou
Jie Guan
Yingshun Li
Xianmin Mai
Hu Liu
Cindy Xinxin Zhao
Ning Wang
Chao Yan
Guilan Gao
Hao Yuan
Jue Dai
Ruijng Su
Zhanhu Guo
机构
[1] Shanghai Polytechnic University,School of Environmental and Materials Engineering
[2] Shanghai Waigaoqiao Bonded Area Environmental Services Co.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, East China Sea Fisheries Research Institute
[3] Ltd.,School of Urban Planning and Architecture
[4] Chinese Academy of Fishery Sciences,National Engineering Research Center for Advanced Polymer Processing Technology
[5] Shanghai Pudong Shuguang Research Center for High Environmental Treatment Technologies,Integrated Composites Laboratory (ICL), Department of Chemical and Bimolecular Engineering
[6] Shanghai Xin Jinqiao Environmental Protection Co.,State Key Laboratory of Marine Resource Utilization in South China Sea
[7] Ltd.,School of Material Science and Engineering
[8] Southwest Minzu University,undefined
[9] Zhengzhou University,undefined
[10] University of Tennessee,undefined
[11] Hainan University,undefined
[12] Jiangsu University of Science and Technology,undefined
来源
关键词
Mechanical Activation Process; LiCoO2 Powders; Valuable Metals; Microtrac Particle Size Analyzer; Crystal Plane Diffraction Peak;
D O I
暂无
中图分类号
学科分类号
摘要
Cobalt (Co) and lithium (Li) were extracted from pure LiCoO2 powders and actual cathode material powders from the spent lithium-ion batteries (LIBs) after l-ascorbic acid dissolution via a mechanical activation process. The influences of activation time and rotation speed on the leaching were discussed. The mechanism of the improved leaching yield was proposed based on the characterization analysis including X-ray diffraction, scanning electron microscope, BET-specific surface area and particle size analyzer. The reduced particle size, increased specific surface area of activated samples, destroyed crystal structure and amorphous state of LiCoO2 contributed to the improved leaching efficiencies of Co and Li. With the activated process, about 99% Co and 100% Li were extracted from actual spent LIBs after 60-min grinding at 500 rpm with mild conditions. This effective process would be of great importance for recovering valuable metals from the spent LIBs at room temperature.
引用
收藏
页码:13790 / 13800
页数:10
相关论文
共 50 条
  • [1] Improved extraction of cobalt and lithium by reductive acid from spent lithium-ion batteries via mechanical activation process
    Guo, Yaoguang
    Li, Yaguang
    Lou, Xiaoyi
    Guan, Jie
    Li, Yingshun
    Mai, Xianmin
    Liu, Hu
    Zhao, Cindy Xinxin
    Wang, Ning
    Yan, Chao
    Gao, Guilan
    Yuan, Hao
    Dai, Jue
    Su, Ruijng
    Guo, Zhanhu
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (19) : 13790 - 13800
  • [2] A process of leaching recovery for cobalt and lithium from spent lithium-ion batteries by citric acid and salicylic acid
    Xu, Meiling
    Kang, Shumei
    Jiang, Feng
    Yan, Xinyong
    Zhu, Zhongbo
    Zhao, Qingping
    Teng, Yingxue
    Wang, Yu
    RSC ADVANCES, 2021, 11 (44) : 27689 - 27700
  • [3] Hydrometallurgical process for recovery of lithium and cobalt from spent lithium-ion secondary batteries
    Tsai, Lung-Chang
    Tsai, Fang-Chang
    Ma, Ning
    Shu, Chi-Min
    ENVIRONMENT MATERIALS AND ENVIRONMENT MANAGEMENT PTS 1-3, 2010, 113-116 : 1688 - +
  • [4] Enhancement of leaching of cobalt and lithium from spent lithium-ion batteries by mechanochemical process
    Qu, Li-li
    He, Ya-qun
    Fu, Yuan-peng
    Xie, Wei-ning
    Ye, Cui-ling
    Lu, Qi-chang
    Li, Jin-long
    Li, Jia-hao
    Pang, Zhi-bo
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2022, 32 (04) : 1325 - 1335
  • [5] Selective extraction of lithium from spent lithium-ion batteries
    Vieceli, N.
    Margarido, F.
    Pereira, M. F. C.
    Durao, F.
    Guimaraes, C.
    Nogueira, C. A.
    WASTES - SOLUTIONS, TREATMENTS AND OPPORTUNITIES II, 2018, : 251 - 257
  • [6] Process for the recovery of cobalt oxalate from spent lithium-ion batteries
    Chen, Liang
    Tang, Xincun
    Zhang, Yang
    Li, Lianxing
    Zeng, Zhiwen
    Zhang, Yi
    HYDROMETALLURGY, 2011, 108 (1-2) : 80 - 86
  • [7] Enhancement in leaching process of lithium and cobalt from spent lithium-ion batteries using benzenesulfonic acid system
    Fu, Yuanpeng
    He, Yaqun
    Qu, Lili
    Feng, Yi
    Li, Jinlong
    Liu, Jiangshan
    Zhang, Guangwen
    Xie, Weining
    WASTE MANAGEMENT, 2019, 88 : 191 - 199
  • [8] A more simple and efficient process for recovery of cobalt and lithium from spent lithium-ion batteries with citric acid
    Yu, Min
    Zhang, Zehui
    Xue, Feng
    Yang, Bin
    Guo, Guanghui
    Qiu, Jianghua
    SEPARATION AND PURIFICATION TECHNOLOGY, 2019, 215 : 398 - 402
  • [9] Mechanism of Lithium and Cobalt Recovery from Spent Lithium-ion Batteries by Sulfation Roasting Process
    Yueshan Yu
    Dahui Wang
    Huaijing Chen
    Xiaodong Zhang
    Li Xu
    Lixin Yang
    Chemical Research in Chinese Universities, 2020, 36 : 908 - 914
  • [10] Mechanism of Lithium and Cobalt Recovery from Spent Lithium-ion Batteries by Sulfation Roasting Process
    Yu Yueshan
    Wang Dahui
    Chen Huaijing
    Zhang Xiaodong
    Xu Li
    Yang Lixin
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2020, 36 (05) : 908 - 914