Witt Vectors and the Field with One Element

被引:0
|
作者
Smirnov A.L. [1 ]
机构
[1] St.Petersburg Department of Steklov Mathematical Institute, St.Petersburg
关键词
D O I
10.1007/s10958-020-04923-w
中图分类号
学科分类号
摘要
Witt vectors for Durov’s generalized rings are constructed. The ring of Witt vectors for the field with one element is calculated. A criterion for the projectivity of modules over the residue field at the Archimedean point is provided. This residue field is compared with the semiring of characteristic 1 in a construction of Connes and Consani. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:95 / 103
页数:8
相关论文
共 50 条
  • [1] GENERALIZED WITT VECTORS
    GRAHAM, JJ
    ADVANCES IN MATHEMATICS, 1993, 99 (02) : 248 - 263
  • [2] Overconvergent Witt vectors
    Davis, Christopher
    Langer, Andreas
    Zink, Thomas
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2012, 668 : 1 - 34
  • [3] An alternative to Witt vectors
    Cuntz, Joachim
    Deninger, Christopher
    MUENSTER JOURNAL OF MATHEMATICS, 2014, 7 (01): : 105 - 114
  • [4] Lie powers and Witt vectors
    R. M. Bryant
    Marianne Johnson
    Journal of Algebraic Combinatorics, 2008, 28 : 169 - 187
  • [5] Witt vectors and Fermat quotients
    Di Bartolo, A.
    Falcone, G.
    JOURNAL OF NUMBER THEORY, 2008, 128 (05) : 1376 - 1387
  • [6] ASYMPTOTICS OF A SEQUENCE OF WITT VECTORS
    BORWEIN, J
    LOU, S
    JOURNAL OF APPROXIMATION THEORY, 1992, 69 (03) : 326 - 337
  • [7] WITT VECTORS AND TRUNCATION POSETS
    Angeltveit, Vigleik
    THEORY AND APPLICATIONS OF CATEGORIES, 2017, 32 : 258 - 285
  • [8] NONARCHIMEDEAN GEOMETRY OF WITT VECTORS
    Kedlaya, Kiran S.
    NAGOYA MATHEMATICAL JOURNAL, 2013, 209 : 111 - 165
  • [9] Construction of the ring of Witt vectors
    Hendrik W. Lenstra
    European Journal of Mathematics, 2019, 5 : 1234 - 1241
  • [10] The norm map of Witt vectors
    Angeltveit, Vigleik
    COMPTES RENDUS MATHEMATIQUE, 2015, 353 (05) : 381 - 386