quasi-linear Schrodinger equations;
a priori estimates;
D O I:
10.1137/S0036141001399520
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We study the local in time solvability of the initial value problem (IVP) of the one dimensional fully nonlinear Schrodinger equation. Under appropriate assumptions on the nonlinearity ( regularity and ellipticity) and on the initial data (regularity and decay at infinity), we establish the existence and uniqueness of solutions of the IVP in weighted Sobolev spaces. The equation can be reduced to its quasi-linear version by taking space derivative. The desired results are obtained by combining a change of variables, energy estimates, and the artificial viscosity method.
机构:
Univ Paris 06, Lab JL Lions, UMR 7598, F-75252 Paris 05, FranceUniv Paris 06, Lab JL Lions, UMR 7598, F-75252 Paris 05, France
Chemin, Jean-Yves
Salort, Delphine
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 04, Lab Biol Computat & Quantitat, UMR 7238, Paris, France
Univ Paris Diderot, Inst Jacques Monod, UMR 7592, F-75205 Paris, FranceUniv Paris 06, Lab JL Lions, UMR 7598, F-75252 Paris 05, France