Multichannel Retinal Blood Vessel Segmentation Based on the Combination of Matched Filter and U-Net Network

被引:9
|
作者
Ma, Yuliang [1 ]
Zhu, Zhenbin [1 ]
Dong, Zhekang [2 ]
Shen, Tao [2 ]
Sun, Mingxu [3 ]
Kong, Wanzeng [4 ]
机构
[1] Hangzhou Dianzi Univ, Inst Intelligent Control & Robot, Hangzhou 310018, Zhejiang, Peoples R China
[2] Hangzhou Dianzi Univ, Sch Elect & Informat, Hangzhou 310018, Zhejiang, Peoples R China
[3] Univ Jinan, Sch Elect Engn, Jinan 250022, Shandong, Peoples R China
[4] Key Lab Brain Machine Collaborat Intelligence, Hangzhou 310018, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
NEURAL-NETWORK; IMAGES; EXTRACTION; LEVEL;
D O I
10.1155/2021/5561125
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Aiming at the current problem of insufficient extraction of small retinal blood vessels, we propose a retinal blood vessel segmentation algorithm that combines supervised learning and unsupervised learning algorithms. In this study, we use a multiscale matched filter with vessel enhancement capability and a U-Net model with a coding and decoding network structure. Three channels are used to extract vessel features separately, and finally, the segmentation results of the three channels are merged. The algorithm proposed in this paper has been verified and evaluated on the DRIVE, STARE, and CHASE_DB1 datasets. The experimental results show that the proposed algorithm can segment small blood vessels better than most other methods. We conclude that our algorithm has reached 0.8745, 0.8903, and 0.8916 on the three datasets in the sensitivity metric, respectively, which is nearly 0.1 higher than other existing methods.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Retinal Blood Vessel Segmentation Based on the Gaussian Matched Filter and U-net
    Gao, Xurong
    Cai, Yiheng
    Qiu, Changyan
    Cui, Yize
    [J]. 2017 10TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI), 2017,
  • [2] Retinal Vessel Segmentation with Differentiated U-Net Network
    Arpaci, Saadet Aytac
    Varli, Songul
    [J]. 2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [3] Retinal Vessel Segmentation Method Based on Improved U-NET Network
    Chang, Longdan
    Ren, Kan
    Wan, Minjie
    Chen, Qian
    [J]. AOPC 2021: NOVEL TECHNOLOGIES AND INSTRUMENTS FOR ASTRONOMICAL MULTI-BAND OBSERVATIONS, 2021, 12069
  • [4] Retinal blood vessel segmentation based on Densely Connected U-Net
    Cheng, Yinlin
    Ma, Mengnan
    Zhang, Liangjun
    Jin, ChenJin
    Ma, Li
    Zhou, Yi
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2020, 17 (04) : 3088 - 3108
  • [5] MSR U-Net: An Improved U-Net Model for Retinal Blood Vessel Segmentation
    Kande, Giri Babu
    Ravi, Logesh
    Kande, Nitya
    Nalluri, Madhusudana Rao
    Kotb, Hossam
    Aboras, Kareem M.
    Yousef, Amr
    Ghadi, Yazeed Yasin
    Sasikumar, A.
    [J]. IEEE ACCESS, 2024, 12 : 534 - 551
  • [6] Retinal Vessel Segmentation Algorithm Based on U-NET Convolutional Neural Network
    Zhang, Yun-Hao
    Wang, Jie-Sheng
    Zhang, Zhi-Hao
    [J]. ENGINEERING LETTERS, 2023, 31 (04)
  • [7] Factorized U-net for Retinal Vessel Segmentation
    Gurrola-Ramos, Javier
    Dalmau, Oscar
    Alarcon, Teresa
    [J]. PATTERN RECOGNITION, MCPR 2022, 2022, 13264 : 181 - 190
  • [8] RESIDUAL U-NET FOR RETINAL VESSEL SEGMENTATION
    Li, Di
    Dharmawan, Dhimas Arief
    Ng, Boon Poh
    Rahardja, Susanto
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 1425 - 1429
  • [9] Extended U-net for Retinal Vessel Segmentation
    Boudegga, Henda
    Elloumi, Yaroub
    Kachouri, Rostom
    Ben Abdallah, Asma
    Bedoui, Mohamed Hedi
    [J]. ADVANCES IN COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2022, 2022, 1653 : 564 - 576
  • [10] PYRAMID U-NET FOR RETINAL VESSEL SEGMENTATION
    Zhang, Jiawei
    Zhang, Yanchun
    Xu, Xiaowei
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1125 - 1129