Angular Independence of Break Position for Magnetic Power Spectral Density in Solar Wind Turbulence

被引:17
|
作者
Duan, Die [1 ]
He, Jiansen [1 ]
Pei, Zhongtian [1 ]
Huang, Shiyong [2 ]
Wu, Honghong [1 ,3 ]
Verscharen, Daniel [3 ,4 ]
Wang, Linghua [1 ]
机构
[1] Peking Univ, Sch Earth & Space Sci, Beijing 100871, Peoples R China
[2] Wuhan Univ, Elect Informat Sch, Wuhan 430079, Hubei, Peoples R China
[3] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England
[4] Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA
来源
ASTROPHYSICAL JOURNAL | 2018年 / 865卷 / 02期
关键词
solar wind; turbulence; WAVE TURBULENCE; FLUCTUATIONS; DISSIPATION; PLASMA; RANGE; MHD;
D O I
10.3847/1538-4357/aad9aa
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The break in power spectral density (PSD) around the ion scales indicates the onset of dissipation and/or dispersion of kinetic turbulence. For Alfven waves in the kinetic regime, the dissipation and dispersion are individually dependent on the propagation angle, theta(kB), which has theta(RB) (the angle between radial direction and local mean magnetic field direction) as a proxy in solar wind measurements. The relation between theta(RB) and the break position helps us find the role of dissipation and/or dispersion for deforming the PSD profile. In order to locate the spectral break position automatically and quantitatively, we develop a dual-power-law fitting method to fit the PSD profiles in both MHD and kinetic ranges simultaneously. The break position f(b) is found to change little with theta(RB), suggesting an angular independence of the spectral break. Furthermore, fb in our statistical study of fast solar wind near 1 au is consistent with a wavenumber k satisfying k(rho(p) + d(p)) similar to 1 (rho(p) is the thermal proton gyroradius and d(p) is the proton inertial length), independently of theta(RB). To interpret this independence, we incorporate the effects of both dissipation and dispersion in a unified description, which is the breakdown of the magnetic frozen-in condition in wavenumber space (k(vertical bar vertical bar), k(perpendicular to)). The breakdown of the frozen-in condition is relatively isotropic compared to the strong anisotropy of dispersion and dissipation. Furthermore, the spatial scale for the onset of the breakdown frozen-in condition is estimated to be the sum of rho(p) and d(p).
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Spectral break of the density power spectrum in solar wind turbulence
    Roberts, O. W.
    Narita, Y.
    Nakamura, R.
    Voeroes, Z.
    [J]. ASTRONOMY & ASTROPHYSICS, 2023, 677
  • [2] POWER ANISOTROPY IN THE MAGNETIC FIELD POWER SPECTRAL TENSOR OF SOLAR WIND TURBULENCE
    Wicks, R. T.
    Forman, M. A.
    Horbury, T. S.
    Oughton, S.
    [J]. ASTROPHYSICAL JOURNAL, 2012, 746 (01):
  • [3] Magnetic Reconnection May Control the Ion-scale Spectral Break of Solar Wind Turbulence
    Vech, Daniel
    Mallet, Alfred
    Klein, Kristopher G.
    Kasper, Justin C.
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2018, 855 (02)
  • [4] SOLAR WIND DENSITY SPECTRA AROUND THE ION SPECTRAL BREAK
    Safrankova, J.
    Nemecek, Z.
    Nemec, F.
    Prech, L.
    Pitna, A.
    Chen, C. H. K.
    Zastenker, G. N.
    [J]. ASTROPHYSICAL JOURNAL, 2015, 803 (02):
  • [5] Ion-scale spectral break of solar wind turbulence at high and low beta
    Chen, C. H. K.
    Leung, L.
    Boldyrev, S.
    Maruca, B. A.
    Bale, S. D.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (22) : 8081 - 8088
  • [6] The Composition of Solar Wind Turbulence Near The Spectral Break: Processes and Instabilities at Kinetic Scales
    Podesta, John J.
    [J]. PROCEEDINGS OF THE FOURTEENTH INTERNATIONAL SOLAR WIND CONFERENCE (SOLAR WIND 14), 2016, 1720
  • [7] Spectral exponents of kinetic and magnetic energy spectra in solar wind turbulence
    Podesta, J. J.
    Roberts, D. A.
    Goldstein, M. L.
    [J]. ASTROPHYSICAL JOURNAL, 2007, 664 (01): : 543 - 548
  • [8] Relating the Solar Wind Turbulence Spectral Break at the Dissipation Range with an Upstream Spectral Bump at Planetary Bow Shocks
    Terres, M.
    Li, Gang
    [J]. ASTROPHYSICAL JOURNAL, 2022, 924 (02):
  • [9] Statistical analysis of the high-frequency spectral break of the solar wind turbulence at 1 AU
    Markovskii, S. A.
    Vasquez, Bernard J.
    Smith, Charles W.
    [J]. ASTROPHYSICAL JOURNAL, 2008, 675 (02): : 1576 - 1583
  • [10] Ion-Scale Spectral Break in the Normal Plasma Beta Range in the Solar Wind Turbulence
    Wang, X.
    Tu, C. -Y.
    He, J. -S.
    Wang, L. -H.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2018, 123 (01) : 68 - 75