Fuzzy clustering algorithm for automatically determining the number of clusters

被引:0
|
作者
Hu Yangyang [1 ]
Liu Zengli [1 ]
机构
[1] Kunming Univ Sci & Technol, Informat & Automat Inst, Kunming, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
AP clustering; firefly algorithm; fuzzy C-means clustering; automated image segmentation;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the process of image segmentation based on clustering, it is necessary to manually determine the number of clusters segmented, which makes the image automation less. A fuzzy clustering algorithm is proposed to automatically determine the number of clusters. First, the similarity matrix is constructed using the features of the extracted image, and the number of clusters is determined using the AP clustering algorithm. Then, the obtained number of clusters is input to the FCM algorithm, and the clustering center is optimized using the firefly algorithm. Finally, a simulation experiment was conducted. The experimental results show that the improved FCM algorithm has a good effect and can realize automatic image segmentation.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Fuzzy C-means clustering algorithm for automatically determining the number of clusters
    Wang, Zhihe
    Wang, Shuyan
    Du, Hui
    Guo, Hao
    2020 16TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2020), 2020, : 223 - 227
  • [2] A Spectral Clustering Algorithm for Automatically Determining Clusters Number
    Chen, Bin
    Wang, Ya-lin
    Gong, Fan-ying
    Wang, Xiao-li
    Yang, Chun-hua
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 3723 - 3728
  • [3] A Clustering Algorithm for Automatically Determining the Number of Clusters Based on Coefficient of Variation
    Liu, Tengteng
    Qu, Shouning
    Zhang, Kun
    PROCEEDINGS OF THE 2018 2ND INTERNATIONAL CONFERENCE ON BIG DATA RESEARCH (ICBDR 2018), 2018, : 100 - 106
  • [4] A density-peak-based clustering algorithm of automatically determining the number of clusters
    Tong, Wuning
    Liu, Sen
    Gao, Xiao-Zhi
    NEUROCOMPUTING, 2021, 458 : 655 - 666
  • [5] Fuzzy Clustering: Determining the Number of Clusters
    Rezankova, Hana
    Husek, Dusan
    2012 FOURTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL ASPECTS OF SOCIAL NETWORKS (CASON), 2012, : 277 - 282
  • [6] Fuzzy C-Means Algorithm Automatically Determining Optimal Number of Clusters
    Xing, Ruikang
    Li, Chenghai
    CMC-COMPUTERS MATERIALS & CONTINUA, 2019, 60 (02): : 767 - 780
  • [7] An improved RPCL algorithm for determining clustering number automatically
    Yang, Jun
    Jin, Lianwen
    TENCON 2006 - 2006 IEEE REGION 10 CONFERENCE, VOLS 1-4, 2006, : 417 - +
  • [8] SMART: a subspace clustering algorithm that automatically identifies the appropriate number of clusters
    Jing, Liping
    Li, Junjie
    Ng, Michael K.
    Cheung, Yiu-ming
    Huang, Joshua
    INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT, 2009, 1 (02) : 149 - 177
  • [9] The FRCK clustering algorithm for determining cluster number and removing outliers automatically
    Guo, Yubin
    Wu, Yuhang
    Zhang, Xiaopeng
    Bo, Aofeng
    Li, Ximing
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2021, 24 (05) : 485 - 494
  • [10] A Method for Automatically Determining The Number of Clusters of LAC
    Liu, Han
    Wu, Qingfeng
    Dong, Huailin
    Wang, Shuangshuang
    Cai, Qing
    Ma, Zhuo
    ICCSSE 2009: PROCEEDINGS OF 2009 4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE & EDUCATION, 2009, : 1907 - +