Infinite Geodesics of Sub-Finsler Distances in Heisenberg Groups

被引:0
|
作者
Balogh, Zoltan M. [1 ]
Calogero, Andrea [2 ]
机构
[1] Univ Bern, Dept Math & Stat, Sidlerstr 5, CH-3012 Bern, Switzerland
[2] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 53, I-20125 Milan, Italy
基金
瑞士国家科学基金会;
关键词
TIME;
D O I
10.1093/imrn/rnz074
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider Heisenberg groups equipped with a sub-Finsler metric. Using methods of optimal control theory we prove that in this geometric setting the infinite geodesics are horizontal lines under the assumption that the sub-Finsler metric is defined by a strictly convex norm. This answers a question posed in [8] and has applications in the characterization of isometric embeddings into Heisenberg groups.
引用
收藏
页码:4805 / 4837
页数:33
相关论文
共 50 条
  • [1] Sub-Finsler Geodesics on the Cartan Group
    Andrei A. Ardentov
    Enrico Le Donne
    Yuri L. Sachkov
    [J]. Regular and Chaotic Dynamics, 2019, 24 : 36 - 60
  • [2] Sub-Finsler Geodesics on the Cartan Group
    Ardentov, Andrei A.
    Le Donne, Enrico
    Sachkov, Yuri L.
    [J]. REGULAR & CHAOTIC DYNAMICS, 2019, 24 (01): : 36 - 60
  • [3] HOMOGENEOUS GEODESICS IN HOMOGENEOUS SUB-FINSLER MANIFOLDS
    Yan, Zaili
    Zhou, Tao
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (06) : 1607 - 1620
  • [4] Explicit Formulae for Geodesics in Left-Invariant Sub-Finsler Problems on Heisenberg Groups via Convex Trigonometry
    Lokutsievskiy, L. V.
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2021, 27 (04) : 661 - 681
  • [5] Sub-Finsler Horofunction Boundaries of the Heisenberg Group
    Fisher, Nate
    Golo, Sebastiano Nicolussi
    [J]. ANALYSIS AND GEOMETRY IN METRIC SPACES, 2021, 9 (01): : 19 - 52
  • [6] The Bernstein problem for (X, Y )-Lipschitz surfaces in three-dimensional sub-Finsler Heisenberg groups
    Giovannardi, Gianmarco
    Ritore, Manuel
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2024, 26 (09)
  • [7] Isometries of Carnot Groups and Sub-Finsler Homogeneous Manifolds
    Le Donne, Enrico
    Ottazzi, Alessandro
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (01) : 330 - 345
  • [8] Isometries of Carnot Groups and Sub-Finsler Homogeneous Manifolds
    Enrico Le Donne
    Alessandro Ottazzi
    [J]. The Journal of Geometric Analysis, 2016, 26 : 330 - 345
  • [9] Variational problems concerning sub-Finsler metrics in Carnot groups
    Essebei, Fares
    Pasqualetto, Enrico
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2023, 29
  • [10] Explicit Formulae for Geodesics in Left–Invariant Sub–Finsler Problems on Heisenberg Groups via Convex Trigonometry
    L. V. Lokutsievskiy
    [J]. Journal of Dynamical and Control Systems, 2021, 27 : 661 - 681