GLOBAL CLASSICAL SOLUTIONS FOR QUANTUM KINETIC FOKKER-PLANCK EQUATIONS

被引:2
|
作者
Luo, Lan [1 ,2 ]
Zhang, Xinping [3 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
[2] Guangzhou Univ, Guangdong Higher Educ Inst, Key Lab Math & Interdisciplinary Sci, Guangzhou 510006, Guangdong, Peoples R China
[3] Luoyang Inst Sci & Technol, Dept Math & Sci, Luoyang 471023, Peoples R China
基金
中国国家自然科学基金;
关键词
quantum Fokker-Planck equations; energy method; convergence rates; BOLTZMANN-EQUATION; LANDAU EQUATION; ENERGY METHOD; WHOLE SPACE; PARTICLES; SYSTEM; CONVERGENCE; EQUILIBRIUM; BEHAVIOR; FERMIONS;
D O I
10.1016/S0252-9602(14)60147-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a class of nonlinear kinetic Fokker-Planck equations modeling quantum particles which obey the Bose-Einstein and Fermi-Dirac statistics, respectively. We establish the existence and convergence rate to the steady state of global classical solution to such kind of equations around the steady state.
引用
收藏
页码:140 / 156
页数:17
相关论文
共 50 条
  • [1] GLOBAL CLASSICAL SOLUTIONS FOR QUANTUM KINETIC FOKKER-PLANCK EQUATIONS
    罗兰
    张新平
    Acta Mathematica Scientia, 2015, 35 (01) : 140 - 156
  • [2] φ-Entropies: convexity, coercivity and hypocoercivity for Fokker-Planck and kinetic Fokker-Planck equations
    Dolbeault, Jean
    Li, Xingyu
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (13): : 2637 - 2666
  • [3] EXISTENCE OF GLOBAL WEAK SOLUTIONS TO FOKKER-PLANCK AND NAVIER-STOKES-FOKKER-PLANCK EQUATIONS IN KINETIC MODELS OF DILUTE POLYMERS
    Barrett, John W.
    Suli, Endre
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2010, 3 (03): : 371 - 408
  • [4] Periodic solutions of Fokker-Planck equations
    Chen, Feng
    Han, Yuecai
    Li, Yong
    Yang, Xue
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (01) : 285 - 298
  • [5] The existence of mild and classical solutions for time fractional Fokker-Planck equations
    Peng, Li
    Zhou, Yong
    MONATSHEFTE FUR MATHEMATIK, 2022, 199 (02): : 377 - 410
  • [6] TIME AVERAGES FOR KINETIC FOKKER-PLANCK EQUATIONS
    Brigati, Giovanni
    KINETIC AND RELATED MODELS, 2022, : 524 - 539
  • [7] Sobolev embeddings for kinetic Fokker-Planck equations
    Pascucci, Andrea
    Pesce, Antonello
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (07)
  • [8] On global solutions to some non-Markovian quantum kinetic models of Fokker-Planck type
    Alejo, Miguel A.
    Lopez, Jose Luis
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (02):
  • [9] Exact solutions of Fokker-Planck equations associated to quantum wave functions
    Petroni, NC
    De Martino, S
    De Siena, S
    PHYSICS LETTERS A, 1998, 245 (1-2) : 1 - 10
  • [10] Lp-solutions of Fokker-Planck equations
    Wei, Jinlong
    Liu, Bin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 85 : 110 - 124