Static and dynamic boundary element analysis in incompressible linear elasticity

被引:50
|
作者
Polyzos, D [1 ]
Tsinopoulos, SV
Beskos, DE
机构
[1] Univ Patras, Dept Mech Engn, GR-26500 Patras, Greece
[2] Univ Patras, Dept Civil Engn, GR-26500 Patras, Greece
关键词
D O I
10.1016/S0997-7538(98)80058-2
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The boundary element formulation of incompressible, isotropic, linear elastostatics and frequency domain elastodynamics for the displacements and hydrostatic pressure is presented. Both two-and three-dimensional problems are considered. It is proven that the incompressible fundamental tensors can be obtained from the corresponding compressible ones by simply putting the Poisson ratio nu equal to 0.5 in elastostatics and the p-wavenumber ii, equal to zero in elastodynamics. The various kernels employed in a complete static or dynamic boundary element analysis for the compressible case are written in a modified form that permits one to use already existing codes for compressible, incompressible or nearly incompressible cases without any problem. Numerical examples involving two-and three-dimensional problems under static and dynamic conditions are presented. These examples serve to illustrate the method and demonstrate its high accuracy and efficiency. (C) Elsevier, Paris.
引用
收藏
页码:515 / 536
页数:22
相关论文
共 50 条
  • [1] A robust boundary element method for nearly incompressible linear elasticity
    O. Steinbach
    [J]. Numerische Mathematik, 2003, 95 : 553 - 562
  • [2] A robust boundary element method for nearly incompressible linear elasticity
    Steinbach, O
    [J]. NUMERISCHE MATHEMATIK, 2003, 95 (03) : 553 - 562
  • [3] On finite element formulations for nearly incompressible linear elasticity
    K. B. Nakshatrala
    A. Masud
    K. D. Hjelmstad
    [J]. Computational Mechanics, 2008, 41 : 547 - 561
  • [4] On finite element formulations for nearly incompressible linear elasticity
    Nakshatrala, K. B.
    Masud, A.
    Hjelmstad, K. D.
    [J]. COMPUTATIONAL MECHANICS, 2008, 41 (04) : 547 - 561
  • [5] On the enhanced strain finite element method for incompressible linear elasticity
    Chen, Xingding
    Hu, Qiya
    Xiao, Junmin
    [J]. APPLIED NUMERICAL MATHEMATICS, 2013, 72 : 131 - 142
  • [6] ACCELERATION OF BOUNDARY ELEMENT METHOD FOR LINEAR ELASTICITY
    Zapletal, Jan
    Merta, Michal
    Cermak, Martin
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [7] A mixed virtual element method for nearly incompressible linear elasticity equations
    Huoyuan Duan
    Ziliang Li
    [J]. Advances in Computational Mathematics, 2023, 49
  • [8] A mixed virtual element method for nearly incompressible linear elasticity equations
    Duan, Huoyuan
    Li, Ziliang
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2023, 49 (01)
  • [9] Boundary element solution for the Cauchy problem in linear elasticity
    Marin, L
    Elliott, L
    Ingham, DB
    Lesnic, D
    [J]. BOUNDARY ELEMENTS XXII, 2000, 8 : 83 - 92
  • [10] A NEW BOUNDARY ELEMENT METHOD FORMULATION FOR LINEAR ELASTICITY
    GHOSH, N
    RAJIYAH, H
    GHOSH, S
    MUKHERJEE, S
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1986, 53 (01): : 69 - 76