Semantic Parsing via Paraphrasing

被引:222
|
作者
Berant, Jonathan [1 ]
Liang, Percy [1 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
关键词
D O I
10.3115/v1/p14-1133
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A central challenge in semantic parsing is handling the myriad ways in which knowledge base predicates can be expressed. Traditionally, semantic parsers are trained primarily from text paired with knowledge base information. Our goal is to exploit the much larger amounts of raw text not tied to any knowledge base. In this paper, we turn semantic parsing on its head. Given an input utterance, we first use a simple method to deterministically generate a set of candidate logical forms with a canonical realization in natural language for each. Then, we use a paraphrase model to choose the realization that best paraphrases the input, and output the corresponding logical form. We present two simple paraphrase models, an association model and a vector space model, and train them jointly from question-answer pairs. Our system PARASEMPRE improves state-of-the-art accuracies on two recently released question-answering datasets.
引用
收藏
页码:1415 / 1425
页数:11
相关论文
共 50 条
  • [1] From Paraphrasing to Semantic Parsing: Unsupervised Semantic Parsing via Synchronous Semantic Decoding
    Wu, Shan
    Chen, Bo
    Xin, Chunlei
    Han, Xianpei
    Sun, Le
    Zhang, Weipeng
    Chen, Jiansong
    Yang, Fan
    Cai, Xunliang
    [J]. 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (ACL-IJCNLP 2021), VOL 1, 2021, : 5110 - 5121
  • [2] Improve Chinese Semantic Dependency Parsing via Syntactic Dependency Parsing
    Zhang, Meishan
    Che, Wanxiang
    Shao, Yanqiu
    Liu, Ting
    [J]. 2012 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING (IALP 2012), 2012, : 53 - 56
  • [3] Controllable Semantic Parsing via Retrieval Augmentation
    Pasupat, Panupong
    Zhang, Yuan
    Guu, Kelvin
    [J]. 2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 7683 - 7698
  • [4] Semantic Dependency Parsing via Book Embedding
    Sun, Weiwei
    Cao, Junjie
    Wan, Xiaojun
    [J]. PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 1, 2017, : 828 - 838
  • [5] Question Answering via Phrasal Semantic Parsing
    Xu, Kun
    Feng, Yansong
    Huang, Songfang
    Zhao, Dongyan
    [J]. EXPERIMENTAL IR MEETS MULTILINGUALITY, MULTIMODALITY, AND INTERACTION, 2015, 9283 : 414 - 426
  • [6] Semantic Image Segmentation via Deep Parsing Network
    Liu, Ziwei
    Li, Xiaoxiao
    Luo, Ping
    Loy, Chen Change
    Tang, Xiaoou
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 1377 - 1385
  • [7] Semantic Paraphrasing for Information Retrieval and Extraction
    Apresjan, Juri D.
    Boguslavsky, Igor M.
    Iomdin, Leonid L.
    Cinman, Leonid L.
    Timoshenko, Svetlana P.
    [J]. FLEXIBLE QUERY ANSWERING SYSTEMS: 8TH INTERNATIONAL CONFERENCE, FQAS 2009, 2009, 5822 : 512 - 523
  • [8] Semantic Human Parsing via Scalable Semantic Transfer over Multiple Label Domains
    Yang, Jie
    Wang, Chaoqun
    Li, Zhen
    Wang, Junle
    Zhang, Ruimao
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 19424 - 19433
  • [9] Conversational Semantic Parsing
    Aghajanyan, Armen
    Maillard, Jean
    Shrivastava, Akshat
    Diedrick, Keith
    Haeger, Mike
    Li, Haoran
    Mehdad, Yashar
    Stoyanov, Ves
    Kumar, Anuj
    Lewis, Mike
    Gupta, Sonal
    [J]. PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 5026 - 5035
  • [10] Learning for semantic parsing
    Mooney, Raymond J.
    [J]. COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, 2007, 4394 : 311 - 324