Defining planning target volume in radiotherapy for glioblastoma multiforme by using artificial neural network

被引:0
|
作者
Kaspari, N [1 ]
Michaelis, B [1 ]
Gademann, G [1 ]
机构
[1] Otto Von Guericke Univ, Clin Radiotherapy, Inst Measurement & Elect, D-39016 Magdeburg, Germany
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The objective of this project is to create a neural network that generalizes a doctor's knowledge and predicts the planning target volume in radiotherapy from the 3-dimensional image of a detected tumor, In this paper the idea and the first results of predicting the planning target volume by means of an artificial neural network are illustrated.
引用
收藏
页码:14 / 18
页数:5
相关论文
共 50 条
  • [1] Defining planning target volume in radiotherapy by using artificial neural networks
    Kaspari, N
    Gademann, G
    Michaelis, B
    [J]. CAR '97 - COMPUTER ASSISTED RADIOLOGY AND SURGERY, 1997, 1134 : 369 - 374
  • [2] Using an Artificial Neural Network to Define the Planning Target Volume in Radiotherapy
    N. Kaspari
    B. Michaelis
    G. Gademann
    [J]. Journal of Medical Systems, 1997, 21 : 389 - 401
  • [3] Using an artificial neural network to define the planning target volume in radiotherapy
    Kaspari, N
    Michaelis, B
    Gademann, G
    [J]. JOURNAL OF MEDICAL SYSTEMS, 1997, 21 (06) : 389 - 401
  • [4] Using an artificial neural network to define the planning target volume in radiotherapy
    Kaspari, N
    Gademann, G
    Michaelis, B
    [J]. TENTH IEEE SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, PROCEEDINGS, 1997, : 132 - 137
  • [5] Diffusion tensor imaging to inform target volume definition in radiotherapy planning for glioblastoma multiforme
    Berberat, J.
    Khan, S.
    Lutters, G.
    Remonda, L.
    Bodis, S.
    Rogers, S.
    [J]. STRAHLENTHERAPIE UND ONKOLOGIE, 2012, 188 (08) : 729 - 730
  • [6] Fully automated clinical target volume segmentation for glioblastoma radiotherapy using a deep convolutional neural network
    Sadeghi, Sogand
    Farzin, Mostafa
    Gholami, Somayeh
    [J]. POLISH JOURNAL OF RADIOLOGY, 2023, 88 : E31 - E40
  • [7] IMPROVED PREDICTION OF SURGICAL RESECTABILITY IN PATIENTS WITH GLIOBLASTOMA MULTIFORME USING AN ARTIFICIAL NEURAL NETWORK
    Marcus, A.
    Marcus, H. J.
    Camp, S. J.
    Nandi, D.
    Kitchen, N.
    Thorne, L.
    [J]. JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2019, 90 (03): : E9 - E9
  • [8] DEFINING THE CLINICAL TARGET VOLUME FOR BLADDER CANCER RADIOTHERAPY TREATMENT PLANNING
    Jenkins, Peter
    Anjarwalla, Salim
    Gilbert, Hugh
    Kinder, Richard
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2009, 75 (05): : 1379 - 1384
  • [9] Mean apparent diffusion coefficient values in defining radiotherapy planning target volumes in glioblastoma
    Jeong, Daniel
    Malalis, Christian
    Arrington, John A.
    Field, Aaron S.
    Choi, Jung W.
    Kocak, Mehmet
    [J]. QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2015, 5 (06) : 835 - 845
  • [10] Target volume determination in glioblastoma multiforme and the recurrence pattern
    Swiderski, S
    Walke, M
    Gademann, G
    [J]. STRAHLENTHERAPIE UND ONKOLOGIE, 2004, 180 : 12 - 12