Practical Methods for Vehicle Speed Estimation Using a Microprocessor-Embedded System with AMR Sensors

被引:16
|
作者
Markevicius, Vytautas [1 ]
Navikas, Dangirutis [1 ]
Idzkowski, Adam [2 ]
Andriukaitis, Darius [1 ]
Valinevicius, Algimantas [1 ]
Zilys, Mindaugas [1 ]
机构
[1] Kaunas Univ Technol, Dept Elect Engn, Studentu St 50-418, LT-51368 Kaunas, Lithuania
[2] Bialystok Tech Univ, Fac Elect Engn, Wiejska St 45D, PL-15351 Bialystok, Poland
关键词
magnetic field measurement; magnetic sensors; speed estimation; error analysis; computational complexity; CLASSIFICATION; ALGORITHMS;
D O I
10.3390/s18072225
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The proper operation of computing resources in a microprocessor-embedded system plays a key role in reducing computing time. Processing the variable amount of collected data in real-time improves the performance of a microprocessor-embedded system. In this regard, a vehicle's speed measurement system is no exception. The computing time for evaluating any speed value is expected to be reduced as much as possible. Four computational methods, including cross-correlation, are discussed. An exemplary pair of recorded signals presenting the change in magnetic field magnitude is analyzed. The sample delay values are compared. The results of the evaluated speed and the execution time of the program code are presented for each method based on a dataset of 200 randomly driven vehicles. The results of the performed tests confirm that the cross-correlation-based methods are not always reliable in situations when the sample size is small, i.e., it is a segment of the impulse response caused by a driving vehicle.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A Vehicle Speed Estimation Algorithm Based on Wireless AMR Sensors
    Zhang, Zusheng
    Zhao, Tiezhu
    Yuan, Huaqiang
    [J]. BIG DATA COMPUTING AND COMMUNICATIONS, 2015, 9196 : 167 - 176
  • [2] Vehicle Speed and Length Estimation Errors Using the Intelligent Transportation System with a Set of Anisotropic Magneto-Resistive (AMR) Sensors
    Markevicius, Vytautas
    Navikas, Dangirutis
    Idzkowski, Adam
    Miklusis, Donatas
    Andriukaitis, Darius
    Valinevicius, Algimantas
    Zilys, Mindaugas
    Cepenas, Mindaugas
    Walendziuk, Wojciech
    [J]. SENSORS, 2019, 19 (23)
  • [3] Vehicle Speed and Length Estimation Using Data from Two AnisotropicMagneto-Resistive (AMR) Sensors
    Markevicius, Vytautas
    Navikas, Dangirutis
    Idzkowski, Adam
    Valinevicius, Algimantas
    Zilys, Mindaugas
    Andriukaitis, Darius
    [J]. SENSORS, 2017, 17 (08)
  • [4] The Development of AMR Sensors for Vehicle Position Estimation
    Taghvaeeyan, S.
    Rajamani, R.
    [J]. 2011 AMERICAN CONTROL CONFERENCE, 2011, : 3936 - 3941
  • [5] Vehicle Speed Estimation Using Roadside Sensors
    Obertov, Dmitrii
    Bardov, Vladimir
    Andrievsky, Boris
    [J]. 2014 6TH INTERNATIONAL CONGRESS ON ULTRA MODERN TELECOMMUNICATIONS AND CONTROL SYSTEMS AND WORKSHOPS (ICUMT), 2014, : 111 - 117
  • [6] Traffic Flow and Vehicle Speed Measurements using Anisotropic Magnetoresistive (AMR) Sensors
    Santoso, Budi
    Yang, Bo
    Ong, Chun Lian
    Yuan, Zhimin
    [J]. 2018 IEEE INTERNATIONAL MAGNETIC CONFERENCE (INTERMAG), 2018,
  • [7] Erroneous Vehicle Velocity Estimation Correction Using Anisotropic Magnetoresistive (AMR) Sensors
    Miklusis, Donatas
    Markevicius, Vytautas
    Navikas, Dangirutis
    Ambraziunas, Mantas
    Cepenas, Mindaugas
    Valinevicius, Algimantas
    Zilys, Mindaugas
    Okarma, Krzysztof
    Cuinas, Inigo
    Andriukaitis, Darius
    [J]. SENSORS, 2022, 22 (21)
  • [8] Embedded Vehicle Speed Estimation System Using an Asynchronous Temporal Contrast Vision Sensor
    Bauer, D.
    Belbachir, A. N.
    Donath, N.
    Gritsch, G.
    Kohn, B.
    Litzenberger, M.
    Posch, C.
    Schoen, P.
    Schraml, S.
    [J]. EURASIP JOURNAL ON EMBEDDED SYSTEMS, 2007, (01)
  • [9] Estimating vehicle speed with embedded inertial sensors
    Levenberg, Eyal
    [J]. TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2014, 46 : 300 - 308
  • [10] Fuzzy estimation of vehicle speed using an accelerometer and wheel sensors
    Hwang, JK
    Song, CK
    [J]. INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2005, 6 (04) : 359 - 365