Soil Moisture and Forest Biomass retrieval on a global scale by using CyGNSS data and Artificial Neural Networks

被引:9
|
作者
Santi, E. [1 ]
Pettinato, S. [1 ]
Paloscia, S. [1 ]
Clarizia, M. P. [2 ]
Dente, L. [3 ]
Guerriero, L. [3 ]
Comite, D. [4 ]
Pierdicca, N. [4 ]
机构
[1] CNR IFAC, Via Madonna del Piano 10, I-50019 Florence, Italy
[2] Deimos Space UK, Harwell, Berks, England
[3] Univ Roma Tor Vergata, Rome, Italy
[4] Univ Roma La Sapienza, DIET, Rome, Italy
关键词
GNSS-R; CyGNSS; Soil Moisture; Vegetation Opacity; Artificial Neural Networks;
D O I
10.1109/IGARSS39084.2020.9323896
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study aims at assessing the potential of the NASA's Cyclone GNSS (CyGNSS) data for observing SM and forest biomass. As reference values for the comparison, global datasets of Vegetation Optical Depth (VOD) and SM derived from NASA's Soil Moisture Active and Passive mission SMAP have been considered. The results of the sensitivity analysis suggested exploiting the CyGNSS capabilities in estimating VOD and SM by setting-up prototype retrieval algorithms based on Artificial Neural Networks (ANN).
引用
收藏
页码:5905 / 5908
页数:4
相关论文
共 50 条
  • [1] GLOBAL SOIL MOISTURE ESTIMATION USING CYGNSS DATA
    Yan, Qingyun
    Jin, Shuanggen
    Huang, Weimin
    Jia, Yan
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 6182 - 6185
  • [2] Analysis of CYGNSS Data for Soil Moisture Retrieval
    Clarizia, Maria Paola
    Pierdicca, Nazzareno
    Costantini, Fabiano
    Floury, Nicolas
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (07) : 2227 - 2235
  • [3] GLOBAL RETRIEVAL OF SOIL MOISTURE USING NEURAL NETWORKS TRAINED WITH SYNTHETIC RADIOMETRIC DATA
    Rodriguez-Fernandez, Nemesio J.
    Richaume, Philippe
    Kerr, Yann H.
    Aires, Filipe
    Prigent, Catherine
    Wigneron, Jean-Pierre
    [J]. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 1581 - 1584
  • [4] High Spatio-Temporal Resolution CYGNSS Soil Moisture Estimates Using Artificial Neural Networks
    Eroglu, Orhan
    Kurum, Mehmet
    Boyd, Dylan
    Gurbuz, Ali Cafer
    [J]. REMOTE SENSING, 2019, 11 (19)
  • [5] COMBINING CYGNSS AND MACHINE LEARNING FOR SOIL MOISTURE AND FOREST BIOMASS RETRIEVAL IN VIEW OF THE ESA SCOUT HYDROGNSS MISSION
    Santi, E.
    Clarizia, M. P.
    Comite, D.
    Dente, L.
    Guerriero, L.
    Pierdicca, N.
    Floury, Nicolas
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 7433 - 7436
  • [6] Effect of surface temperature on soil moisture retrieval using CYGNSS
    Zhu, Yifan
    Guo, Fei
    Zhang, Xiaohong
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 112
  • [7] On the retrieval of forest biomass from SAR data by neural networks
    Del Frate, F
    Solimini, D
    [J]. IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 1637 - 1638
  • [8] Time-Series Retrieval of Soil Moisture Using CYGNSS
    M-Khaldi, Mohammad M.
    Johnson, Joel T.
    O'Brien, Andrew J.
    Balenzano, Anna
    Mattia, Francesco
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (07): : 4322 - 4331
  • [9] Soil Moisture Retrieval from the CyGNSS Data Based on a Bilinear Regression
    Chen, Sizhe
    Yan, Qingyun
    Jin, Shuanggen
    Huang, Weimin
    Chen, Tiexi
    Jia, Yan
    Liu, Shuci
    Cao, Qing
    [J]. REMOTE SENSING, 2022, 14 (09)
  • [10] Soil Moisture and Biomass Retrieval using ALOS/PALSAR Data
    Koyama, Christian N.
    Sato, Motoyuki
    [J]. CONFERENCE PROCEEDINGS OF 2013 ASIA-PACIFIC CONFERENCE ON SYNTHETIC APERTURE RADAR (APSAR), 2013, : 49 - 52