Bosonization of one-dimensional fermions out of equilibrium

被引:84
|
作者
Gutman, D. B. [1 ,2 ,3 ]
Gefen, Yuval [4 ]
Mirlin, A. D. [2 ,3 ,5 ,6 ]
机构
[1] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
[2] Karlsruhe Inst Technol, Inst Theorie Kondensierten Mat, D-76128 Karlsruhe, Germany
[3] Karlsruhe Inst Technol, DFG Ctr Funct Nanostruct, D-76128 Karlsruhe, Germany
[4] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-76100 Rehovot, Israel
[5] Karlsruhe Inst Technol, Inst Nanotechnol, D-76021 Karlsruhe, Germany
[6] Petersburg Nucl Phys Inst, St Petersburg 188300, Russia
关键词
SHOT-NOISE; FUNCTIONAL BOSONIZATION; COUNTING STATISTICS; LUTTINGER LIQUIDS; QUASI-PARTICLES; COHERENT STATES; CHARGE; TRANSPORT; ELECTRONS; CONDUCTANCE;
D O I
10.1103/PhysRevB.81.085436
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Bosonization technique for one-dimensional fermions out of equilibrium is developed in the framework of the Keldysh action formalism. We first demonstrate how this approach is implemented for free fermions and for the problem of nonequilibrium Fermi edge singularity. We then employ the technique to study an interacting quantum wire attached to two electrodes with arbitrary energy distributions. The nonequilibrium electron Green's functions, which can be measured via tunneling spectroscopy technique and carry the information about energy distribution, zero-bias anomaly, and dephasing, are expressed in terms of functional determinants of single-particle "counting" operators. The corresponding time-dependent scattering phase is found to be intrinsically related to "fractionalization" of electron-hole excitations in the tunneling process and at boundaries with leads. Results are generalized to the case of spinful particles as well to Green's functions at different spatial points (relevant to the problem of dephasing in Luttinger liquid interferometers). For double-step distributions, the dephasing rates are oscillatory functions of the interaction strength.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] One-dimensional bosonization and the SYK model
    Murugan, Jeff
    Nastase, Horatiu
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (08)
  • [2] One-dimensional bosonization and the SYK model
    Jeff Murugan
    Horatiu Nastase
    Journal of High Energy Physics, 2019
  • [3] Multilinearity of the covariances in one-dimensional models out of equilibrium
    Redig, Frank
    Ruszel, Wioletta
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (22)
  • [4] Topology of One-Dimensional Quantum Systems Out of Equilibrium
    McGinley, Max
    Cooper, Nigel R.
    PHYSICAL REVIEW LETTERS, 2018, 121 (09)
  • [5] One-dimensional fermions with incommensuration
    Sen, D
    Lal, S
    PHYSICAL REVIEW B, 2000, 61 (13) : 9001 - 9013
  • [6] Bosonization out of equilibrium
    Gutman, D. B.
    Gefen, Yuval
    Mirlin, A. D.
    EPL, 2010, 90 (03)
  • [7] Mapping out-of-equilibrium into equilibrium in one-dimensional transport models
    Tailleur, Julien
    Kurchan, Jorge
    Lecomte, Vivien
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (50)
  • [8] Bosonization of strongly interacting one-dimensional electrons
    Matveev, K. A.
    Furusaki, A.
    Glazman, L. I.
    PHYSICAL REVIEW B, 2007, 76 (15):
  • [9] Bosonization and correlators of the one-dimensional Hubbard model
    Ovchinnikov, A. A.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2024, 2024 (10):
  • [10] Out-of-equilibrium one-dimensional disordered dipole chain
    Dolgikh, Anton V.
    Kosov, Daniel S.
    PHYSICAL REVIEW E, 2013, 88 (01):