Quantitative DCE-MRI for prediction of pathological complete response following neoadjuvant treatment for locally advanced breast cancer: the impact of breast cancer subtypes on the diagnostic accuracy

被引:63
|
作者
Drisis, Stylianos [1 ]
Metens, Thierry [2 ]
Ignatiadis, Michael [3 ]
Stathopoulos, Konstantinos [1 ]
Chao, Shih-Li [1 ]
Lemort, Marc [1 ]
机构
[1] Inst Jules Bordet, Dept Radiol, 1 Rue Heger Bordet, B-1000 Brussels, Belgium
[2] Erasme Univ Hosp, Dept Radiol, B-1070 Brussels, Belgium
[3] Inst Jules Bordet, Dept Oncol, B-1000 Brussels, Belgium
关键词
Perfusion magnetic resonance imaging; Neoadjuvant therapy; Breast cancer; Oestrogen receptor; Triple negative breast cancer; CONTRAST-ENHANCED MRI; PREOPERATIVE CHEMOTHERAPY; CYCLOPHOSPHAMIDE; DOXORUBICIN; DOCETAXEL; RECOMMENDATIONS; PARAMETERS; SURVIVAL; THERAPY; TIMES;
D O I
10.1007/s00330-015-3948-0
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
To assess whether DCE-MRI pharmacokinetic (PK) parameters obtained before and during chemotherapy can predict pathological complete response (pCR) differently for different breast cancer groups. Eighty-four patients who received neoadjuvant chemotherapy for locally advanced breast cancer were retrospectively included. All patients underwent two DCE-MRI examinations, one before (EX1) and one during treatment (EX2). Tumours were classified into different breast cancer groups, namely triple negative (TNBC), HER2+ and ER+/HER2-, and compared with the whole population (WP). PK parameters Ktrans and Ve were extracted using a two-compartment Tofts model. At EX1, Ktrans predicted pCR for WP and TNBC. At EX2, maximum diameter (Dmax) predicted pCR for WP and ER+/HER2-. Both PK parameters predicted pCR in WP and TNBC and only Ktrans for the HER2+. pCR was predicted from relative difference (EX1 -aEuro parts per thousand EX2)/EX1 of Dmax and both PK parameters in the WP group and only for Ve in the TNBC group. No PK parameter could predict response for ER+/HER-. ROC comparison between WP and breast cancer groups showed higher but not statistically significant values for TNBC for the prediction of pCR Quantitative DCE-MRI can better predict pCR after neoadjuvant treatment for TNBC but not for the ER+/HER2- group. aEuro cent DCE-MRI-derived pharmacokinetic parameters can predict response status of neoadjuvant chemotherapy treatment. aEuro cent Ktrans can better predict pCR for the triple negative group. aEuro cent No pharmacokinetic parameter could predict response for the ER+/HER2- group.
引用
收藏
页码:1474 / 1484
页数:11
相关论文
共 50 条
  • [1] Quantitative DCE-MRI for prediction of pathological complete response following neoadjuvant treatment for locally advanced breast cancer: the impact of breast cancer subtypes on the diagnostic accuracy
    Stylianos Drisis
    Thierry Metens
    Michael Ignatiadis
    Konstantinos Stathopoulos
    Shih-Li Chao
    Marc Lemort
    [J]. European Radiology, 2016, 26 : 1474 - 1484
  • [2] The accuracy of MRI in detecting pathological complete response following neoadjuvant chemotherapy in different breast cancer subtypes
    Kuzmova, Miroslava
    Cullinane, Carolyn
    Rutherford, Claire
    Mccartan, Damian
    Rothwell, Jane
    Evoy, Denis
    Geraghty, James
    Prichard, Ruth S.
    [J]. SURGICAL ONCOLOGY-OXFORD, 2023, 51
  • [3] Quantitative DCE-MRI prediction of breast cancer recurrence following neoadjuvant chemotherapy: a preliminary study
    Thawani, Rajat
    Gao, Lina
    Mohinani, Ajay
    Tudorica, Alina
    Li, Xin
    Mitri, Zahi
    Huang, Wei
    [J]. BMC MEDICAL IMAGING, 2022, 22 (01)
  • [4] Quantitative DCE-MRI prediction of breast cancer recurrence following neoadjuvant chemotherapy: a preliminary study
    Rajat Thawani
    Lina Gao
    Ajay Mohinani
    Alina Tudorica
    Xin Li
    Zahi Mitri
    Wei Huang
    [J]. BMC Medical Imaging, 22
  • [5] Early Prediction and Evaluation of Breast Cancer Response to Neoadjuvant Chemotherapy Using Quantitative DCE-MRI
    Tudorica, Alina
    Oh, Karen Y.
    Chui, Stephen Y-C
    Roy, Nicole
    Troxell, Megan L.
    Naik, Arpana
    Kemmer, Kathleen A.
    Chen, Yiyi
    Holtorf, Megan L.
    Afzal, Aneela
    Springer, Charles S., Jr.
    Li, Xin
    Huang, Wei
    [J]. TRANSLATIONAL ONCOLOGY, 2016, 9 (01): : 8 - 17
  • [6] quantitative DCE-MRI to predict the response of primary breast cancer to neoadjuvant therapy
    Li, X.
    Arlinghaus, L. R.
    Chakravarthy, A. B.
    Abramson, R. G.
    Abramson, V. G.
    Farley, J.
    Ayers, G. D.
    Mayer, I. A.
    Kelley, M. C.
    Meszoely, I. M.
    Means-Powell, J.
    Grau, A. M.
    Sanders, M. E.
    Yankeelov, T. E.
    [J]. CANCER RESEARCH, 2012, 72
  • [7] DCE-MRI and dynamic FDG PET to monitor breast cancer response to neoadjuvant sunitinib in patients with locally-advanced breast cancer
    Specht, J. M.
    Partridge, S.
    Dunnwald, L.
    Doot, R.
    Schubert, E.
    Kurland, B.
    Gralow, L.
    Linden, H.
    Gadi, V. K.
    Ellis, G.
    Mankoff, D.
    [J]. CANCER RESEARCH, 2009, 69 (02) : 349S - 350S
  • [8] Early prediction of pathological complete response to neoadjuvant chemotherapy combining DCE-MRI and apparent diffusion coefficient values in breast Cancer
    Xinhong Liang
    Xiaofeng Chen
    Zhiqi Yang
    Yuting Liao
    Mengzhu Wang
    Yulin Li
    Weixiong Fan
    Zhuozhi Dai
    Yunuo Zhang
    [J]. BMC Cancer, 22
  • [9] Early prediction of pathological complete response to neoadjuvant chemotherapy combining DCE-MRI and apparent diffusion coefficient values in breast Cancer
    Liang, Xinhong
    Chen, Xiaofeng
    Yang, Zhiqi
    Liao, Yuting
    Wang, Mengzhu
    Li, Yulin
    Fan, Weixiong
    Dai, Zhuozhi
    Zhang, Yunuo
    [J]. BMC CANCER, 2022, 22 (01)
  • [10] Ultrafast DCE-MRI as a new tool for treatment response prediction in neoadjuvant chemotherapy of breast cancer
    Kataoka, Masako
    [J]. DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2023, 104 (12) : 565 - 566