Speaker Recognition Using Discriminant Neighborhood Embedding

被引:1
|
作者
Liang Chunyan [1 ]
Yuan Wenhao [1 ]
Li Yanling [2 ]
Xia Bin [1 ]
Sun Wenzhu [1 ]
机构
[1] Shandong Univ Technol, Coll Comp Sci & Technol, Zibo 255049, Peoples R China
[2] Inner Mongolia Normal Univ, Coll Comp & Informat Engn, Hohhot 010022, Peoples R China
基金
中国国家自然科学基金;
关键词
Speaker recognition; Total variability factor analysis; Neighborhood Preserving Embedding (NPE); Discriminant Neighborhood Embedding (DNE);
D O I
10.11999/JEIT180761
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Discriminant Neighborhood Embedding (DNE) algorithm is introduced into the speaker recognition system. DNE is a manifold learning approach and aims at preserving the local neighborhood structure on the data manifold. As well, DNE has much more power in discrimination by sufficiently using the between-class discriminant information. The experimental results on the telephone-telephone core condition of the NIST 2010 Speaker Recognition Evaluation (SRE) dataset indicate the effectiveness of DNE algorithm.
引用
收藏
页码:1774 / 1778
页数:5
相关论文
共 25 条
  • [1] Bahmaninezhad F, 2017, INT CONF ACOUST SPEE, P5410, DOI 10.1109/ICASSP.2017.7953190
  • [2] Chien JT, 2017, INT CONF ACOUST SPEE, P4935, DOI 10.1109/ICASSP.2017.7953095
  • [3] Front-End Factor Analysis for Speaker Verification
    Dehak, Najim
    Kenny, Patrick J.
    Dehak, Reda
    Dumouchel, Pierre
    Ouellet, Pierre
    [J]. IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2011, 19 (04): : 788 - 798
  • [4] Dhanush BK, 2017, INT CONF ACOUST SPEE, P5385, DOI 10.1109/ICASSP.2017.7953185
  • [5] Double adjacency graphs-based discriminant neighborhood embedding
    Ding, Chuntao
    Zhang, Li
    [J]. PATTERN RECOGNITION, 2015, 48 (05) : 1734 - 1742
  • [6] [郭武 Guo Wu], 2009, [电子与信息学报, Journal of Electronics & Information Technology], V31, P302
  • [7] Haeb-Umbach R., 1992, ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech and Signal Processing (Cat. No.92CH3103-9), P13, DOI 10.1109/ICASSP.1992.225984
  • [8] He XF, 2005, IEEE I CONF COMP VIS, P1208
  • [9] Joachims T., 2008, SVM LIGHT SUPPORT VE
  • [10] KAJAREKAR S S, 2007, P 2017 IEEE INT C AC, DOI 10.1109/ICASSP.2007.366896