Simplex-splines on the Clough-Tocher element

被引:6
|
作者
Lyche, Tom [1 ]
Merrien, Jean-Louis [2 ]
机构
[1] Univ Oslo, Dept Math, POB 1053, N-0316 Oslo, Norway
[2] Univ Rennes, INSA Rennes, CNRS, IRMAR,UMR 6625, F-35000 Rennes, France
关键词
Triangle mesh; Piecewise polynomials; Interpolation; Simplex splines; Marsden-like identity; POWELL-SABIN; 12-SPLIT; INTERPOLATION;
D O I
10.1016/j.cagd.2018.07.004
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose a simplex spline basis for a space of C-1-cubics on the Clough-Tocher split on a triangle. The 12 elements of the basis give a nonnegative partition of unity. We derive two Marsden-like identities, three quasi-interpolants with optimal approximation order and prove L-infinity stability of the basis. The conditions for C-1-junction to neighboring triangles are simple and similar to the C-1 conditions for the cubic Bernstein polynomials on a triangulation. The simplex spline basis can also be linked to the Hermite basis to solve the classical interpolation problem on the Clough-Tocher split. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:76 / 92
页数:17
相关论文
共 50 条