A Confidence-based Dominance Operator in Evolutionary Algorithms for Noisy Multiobjective Optimization Problems

被引:25
|
作者
Boonma, Pruet [1 ]
Suzuki, Junichi [1 ]
机构
[1] Univ Massachusetts, Dept Comp Sci, Boston, MA 02125 USA
关键词
ENVIRONMENTS;
D O I
10.1109/ICTAI.2009.120
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes a noise-aware dominance operator for evolutionary algorithms to solve the multiobjective optimization problems (MOPs) that contain noise in their objective functions. This operator takes objective value samples of given two individuals (or solution candidates), estimates the impacts of noise on the samples and determines whether it is confident enough to judge which one is superior/inferior between the two individuals. Since the proposed operator assumes no noise distributions a priori, it is well applicable to various MOPs whose objective functions follow unknown noise distributions. Experimental results show that it operates reliably in noisy MOPs and outperforms existing noise-aware dominance operators.
引用
收藏
页码:387 / 394
页数:8
相关论文
共 50 条
  • [1] Evolutionary optimisation of noisy multi-objective problems using confidence-based dynamic resampling
    Syberfeldt, Anna
    Ng, Amos
    John, Robert I.
    Moore, Philip
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 204 (03) : 533 - 544
  • [2] Evolutionary Algorithms with Segment-Based Search for Multiobjective Optimization Problems
    Li, Miqing
    Yang, Shengxiang
    Li, Ke
    Liu, Xiaohui
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (08) : 1295 - 1313
  • [3] Multiobjective evolutionary algorithms for complex portfolio optimization problems
    Anagnostopoulos K.P.
    Mamanis G.
    [J]. Computational Management Science, 2011, 8 (3) : 259 - 279
  • [4] Multiobjective evolutionary algorithms for solving constrained optimization problems
    Sarker, Ruhul
    Ray, Tapabrata
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR MODELLING, CONTROL & AUTOMATION JOINTLY WITH INTERNATIONAL CONFERENCE ON INTELLIGENT AGENTS, WEB TECHNOLOGIES & INTERNET COMMERCE, VOL 2, PROCEEDINGS, 2006, : 197 - +
  • [5] Effects of Noisy Multiobjective Test Functions Applied to Evolutionary Optimization Algorithms
    Ryter, Remo
    Hanne, Thomas
    Dornberger, Rolf
    [J]. JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2020, 11 (03) : 128 - 134
  • [6] The Rolling Tide Evolutionary Algorithm: A Multiobjective Optimizer for Noisy Optimization Problems
    Fieldsend, Jonathan E.
    Everson, Richard M.
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2015, 19 (01) : 103 - 117
  • [7] On the locality of dominance and recombination in multiobjective evolutionary algorithms
    Sato, H
    Aguirre, HE
    Tanaka, K
    [J]. 2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 451 - 458
  • [8] AN ANALYSIS OF MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS FOR OPTIMIZATION PROBLEMS WITH TIME CONSTRAINTS
    Camara, M.
    de Toro, F.
    Ortega, J.
    [J]. APPLIED ARTIFICIAL INTELLIGENCE, 2013, 27 (09) : 851 - 879
  • [9] Application of multiobjective evolutionary algorithms for dose optimization problems in brachytherapy
    Lahanas, M
    Milickovic, N
    Baltas, D
    Zamboglou, N
    [J]. EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS, 2001, 1993 : 574 - 587
  • [10] Multi-operator based evolutionary algorithms for solving constrained optimization problems
    Elsayed, Saber M.
    Sarker, Ruhul A.
    Essam, Daryl L.
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2011, 38 (12) : 1877 - 1896