Privacy-Preserving Spatial Trajectory Prediction

被引:0
|
作者
Hu, Wen-Chen [1 ]
Kaabouch, Naima [2 ]
Mousavinezhad, S. Hossein [3 ]
Yang, Hung-Jen [4 ]
机构
[1] Univ North Dakota, Dept Comp Sci, Grand Forks, ND 58202 USA
[2] Univ North Dakota, Dept Elect Engn, Grand Forks, ND 58202 USA
[3] Idaho State Univ, Dept Elect Engn, Pocatello, ID 83209 USA
[4] Natl Kaohsiung Normal Univ, Dept Ind Technol Educ, Kaohsiung 80201, Taiwan
关键词
ALGORITHMS; TREE;
D O I
10.1109/NWRCS.2014.17
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
One of the location-based services, spatial trajectory prediction, can be used in a variety of purposes such as travel recommendations and traffic control and planning, but at the same time, just like most location-based services, the concern of user privacy is a major issue. Without rigorous privacy protection, users would be reluctant to use the services. This research proposes a privacy-preserving method of predicting a spatial trajectory based on the current and previous trajectories by using a matrix representation. Preliminary experimental results show this method is effective and secure for spatial trajectory prediction.
引用
收藏
页码:69 / +
页数:2
相关论文
共 50 条
  • [1] A Novel Matrix Representation for Privacy-Preserving Spatial Trajectory Prediction
    Hu, Wen-Chen
    Kaabouch, Naima
    Yang, Hung-Jen
    Chen, Lei
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ELECTRO-INFORMATION TECHNOLOGY (EIT 2013), 2013,
  • [2] Privacy-preserving spatial keyword location-to-trajectory matching
    Ning Wang
    Jianping Zeng
    Wenxing Hong
    Shunzhi Zhu
    [J]. Distributed and Parallel Databases, 2020, 38 : 667 - 686
  • [3] Privacy-preserving spatial keyword location-to-trajectory matching
    Wang, Ning
    Zeng, Jianping
    Hong, Wenxing
    Zhu, Shunzhi
    [J]. DISTRIBUTED AND PARALLEL DATABASES, 2020, 38 (03) : 667 - 686
  • [4] Trajectory Privacy-preserving Method Combined with Prediction Perturbation in LBS
    Wang, Hui
    Song, Lei
    Shen, Zi-Hao
    Liu, Pei-Qian
    Liu, Kun
    [J]. Journal of Network Intelligence, 2023, 8 (02): : 559 - 585
  • [5] Privacy-preserving trajectory stream publishing
    Al-Hussaeni, Khalil
    Fung, Benjamin C. M.
    Cheung, William K.
    [J]. DATA & KNOWLEDGE ENGINEERING, 2014, 94 : 89 - 109
  • [6] Personalized Privacy-Preserving Trajectory Data Publishing
    Lu Qiwei
    Wang Caimei
    Xiong Yan
    Xia Huihua
    Huang Wenchao
    Gong Xudong
    [J]. CHINESE JOURNAL OF ELECTRONICS, 2017, 26 (02) : 285 - 291
  • [7] Privacy-preserving trajectory similarity computation method
    Yu H.
    Zhang H.
    Yu X.
    Qu J.
    Ge M.
    [J]. Tongxin Xuebao/Journal on Communications, 2022, 43 (11): : 1 - 13
  • [8] Efficient Privacy-Preserving Approaches for Trajectory Datasets
    Hassan, Md Yeakub
    Saha, Ullash
    Mohammed, Noman
    Durocher, Stephane
    Miller, Avery
    [J]. 2020 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2020, : 612 - 619
  • [9] Privacy-Preserving Healthcare Analytics of Trajectory Data
    Leung, Carson K.
    Olawoyin, Anifat M.
    Wen, Qi
    [J]. WEB AND BIG DATA, APWEB-WAIM 2021, PT II, 2021, 12859 : 414 - 420
  • [10] A privacy-preserving vehicle trajectory clustering framework
    Tian, Ran
    Gao, Pulun
    Liu, Yanxing
    [J]. FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2024, 25 (07) : 988 - 1002