Feature Selection for Fuzzy Neural Networks using Group Lasso Regularization

被引:2
|
作者
Gao, Tao [1 ,2 ]
Bai, Xiao [1 ,2 ]
Zhang, Liang [1 ,2 ]
Wang, Jian [3 ]
机构
[1] Beihang Univ, Sch Comp Sci & Engn, Beijing, Peoples R China
[2] Beihang Univ, Jiangxi Res Inst, Pingxiang, Jiangxi, Peoples R China
[3] China Univ Petr East China, Coll Sci, Qingdao, Peoples R China
关键词
feature selection; Group Lasso; fuzzy neural network; SMOOTHING L-1/2 REGULARIZATION; CONVERGENCE ANALYSIS; LEARNING ALGORITHM; PENALTY;
D O I
10.1109/SSCI50451.2021.9659548
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a Group Lasso penalty based embedded/integrated feature selection method for multiple-input and multiple-output (MIMO) Takagi-Sugeno (TS) fuzzy neural network (FNN) is proposed. Group Lasso regularization can produce sparsity on the widths of the modified Gaussian membership function and this can guide us to select the useful features. Compared with Lasso, Group Lasso formulation has a Group penalty to the set of widths (weights) connected to a particular feature. To address the non-differentiability of the Group Lasso term, a smoothing Group Lasso method is introduced. Finally, one benchmark classification problem and two regression problems are used to validate the effectiveness of the proposed method.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Feature Selection for Neural Networks Using Group Lasso Regularization
    Zhang, Huaqing
    Wang, Jian
    Sun, Zhanquan
    Zurada, Jacek M.
    Pal, Nikhil R.
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2020, 32 (04) : 659 - 673
  • [2] Feature Selection Using a Neural Network With Group Lasso Regularization and Controlled Redundancy
    Wang, Jian
    Zhang, Huaqing
    Wang, Junze
    Pu, Yifei
    Pal, Nikhil R.
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (03) : 1110 - 1123
  • [3] AUTOMATIC NODE SELECTION FOR DEEP NEURAL NETWORKS USING GROUP LASSO REGULARIZATION
    Ochiai, Tsubasa
    Matsuda, Shigeki
    Watanabe, Hideyuki
    Katagiri, Shigeru
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 5485 - 5489
  • [4] BP Neural Network Feature Selection Based on Group Lasso Regularization
    Liu, Tiqian
    Xiao, Jiang-Wen
    Huang, Zhengyi
    Kong, Erdan
    Liang, Yuntao
    [J]. 2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 2786 - 2790
  • [5] Group Lasso based redundancy-controlled feature selection for fuzzy neural network
    Jun Yang
    Yongyong Xu
    Bin Wang
    Bo Li
    Ming Huang
    Tao Gao
    [J]. Optoelectronics Letters, 2023, 19 : 284 - 289
  • [6] Group Lasso based redundancy-controlled feature selection for fuzzy neural network
    YANG Jun
    XU Yongyong
    WANG Bin
    LI Bo
    HUANG Ming
    GAO Tao
    [J]. Optoelectronics Letters, 2023, 19 (05) : 284 - 289
  • [7] Group Lasso based redundancy-controlled feature selection for fuzzy neural network
    Yang, Jun
    Xu, Yongyong
    Wang, Bin
    Li, Bo
    Huang, Ming
    Gao, Tao
    [J]. OPTOELECTRONICS LETTERS, 2023, 19 (05) : 284 - 289
  • [8] Heterogeneous Feature Selection With Multi-Modal Deep Neural Networks and Sparse Group LASSO
    Zhao, Lei
    Hu, Qinghua
    Wang, Wenwu
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2015, 17 (11) : 1936 - 1948
  • [9] Input selection in ARX model estimation using group lasso regularization
    Klingspor, Mans
    Hansson, Anders
    Lofberg, Johan
    [J]. IFAC PAPERSONLINE, 2018, 51 (15): : 897 - 902
  • [10] Convergence analyses on sparse feedforward neural networks via group lasso regularization
    Wang, Jian
    Cai, Qingling
    Chang, Qingquan
    Zurada, Jacek M.
    [J]. INFORMATION SCIENCES, 2017, 381 : 250 - 269