Spatially-Explicit Testing of a General Aboveground Carbon Density Estimation Model in aWestern Amazonian Forest Using Airborne LiDAR

被引:19
|
作者
Xavier Molina, Patricio [1 ,2 ]
Asner, Gregory P. [3 ]
Farjas Abadia, Mercedes [2 ]
Ojeda Manrique, Juan Carlos [2 ]
Sanchez Diez, Luis Alberto [2 ]
Valencia, Renato [4 ]
机构
[1] Inst Geog Mil, Gest Invest Desarrollo, Seniergues E4-676 & Gral, El Dorado 170403, Quito, Ecuador
[2] Tech Univ Madrid UPM, C Ramiro de Maeztu 7, Madrid 28040, Spain
[3] Carnegie Inst Sci, Dept Global Ecol, 260 Panama St, Stanford, CA 94305 USA
[4] Pontificia Univ Catolica Ecuador, Escuela Ciencias Biol, Lab Ecol Plantas, Apartado 17-01-2184, Quito, Ecuador
关键词
aboveground carbon density; biomass; Ecuador; LiDAR; topographic features; tropical rainforest; LIVE BIOMASS; STOCKS; PLOT; PREDICTION; PRECISION; ACCURACY;
D O I
10.3390/rs8010009
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Mapping aboveground carbon density in tropical forests can support CO2 emission monitoring and provide benefits for national resource management. Although LiDAR technology has been shown to be useful for assessing carbon density patterns, the accuracy and generality of calibrations of LiDAR- based aboveground carbon density ( ACD) predictions with those obtained from field inventory techniques should be intensified in order to advance tropical forest carbon mapping. Here we present results from the application of a general ACD estimation model applied with small- footprint LiDAR data and field- based estimates of a 50- ha forest plot in Ecuador's Yasuni National Park. Subplots used for calibration and validation of the general LiDAR equation were selected based on analysis of topographic position and spatial distribution of aboveground carbon stocks. The results showed that stratification of plot locations based on topography can improve the calibration and application of ACD estimation using airborne LiDAR ( R2 = 0.94, RMSE = 5.81 Mg center dot C center dot ha - 1, BIAS = 0.59). These results strongly suggest that a general LiDAR- based approach can be used for mapping aboveground carbon stocks in western lowland Amazonian forests.
引用
收藏
页数:15
相关论文
共 23 条
  • [1] Impact of data model and point density on aboveground forest biomass estimation from airborne LiDAR
    Mariano Garcia
    Sassan Saatchi
    Antonio Ferraz
    Carlos Alberto Silva
    Susan Ustin
    Alexander Koltunov
    Heiko Balzter
    [J]. Carbon Balance and Management, 12
  • [2] Impact of data model and point density on aboveground forest biomass estimation from airborne LiDAR
    Garcia, Mariano
    Saatchi, Sassan
    Ferraz, Antonio
    Silva, Carlos Alberto
    Ustin, Susan
    Koltunov, Alexander
    Balzter, Heiko
    [J]. CARBON BALANCE AND MANAGEMENT, 2017, 12
  • [3] Modeling Forest Aboveground Carbon Density in the Brazilian Amazon with Integration of MODIS and Airborne LiDAR Data
    Jiang, Xiandie
    Li, Guiying
    Lu, Dengsheng
    Moran, Emilio
    Batistella, Mateus
    [J]. REMOTE SENSING, 2020, 12 (20) : 1 - 25
  • [4] Combining Sample Plot Stratification and Machine Learning Algorithms to Improve Forest Aboveground Carbon Density Estimation in Northeast China Using Airborne LiDAR Data
    Chen, Mingjie
    Qiu, Xincai
    Zeng, Weisheng
    Peng, Daoli
    [J]. REMOTE SENSING, 2022, 14 (06)
  • [5] Aboveground biomass estimation of an old-growth mangrove forest using airborne LiDAR in the Philippines
    Mandal, Mohammad Shamim Hasan
    Suwa, Rempei
    Rollon, Rene N.
    Albano, Giannina Marie G.
    Cruz, Green Ann A.
    Ono, Kenji
    Primavera-Tirol, Yasmin H.
    Blanco, Ariel C.
    Nadaoka, Kazuo
    [J]. ECOLOGICAL RESEARCH, 2024,
  • [6] Stratification-Based Forest Aboveground Biomass Estimation in a Subtropical Region Using Airborne Lidar Data
    Jiang, Xiandie
    Li, Guiying
    Lu, Dengsheng
    Chen, Erxue
    Wei, Xinliang
    [J]. REMOTE SENSING, 2020, 12 (07)
  • [7] Regional Aboveground Forest Biomass Estimation using Airborne and Spaceborne LiDAR Fusion with Optical Data in the Southwest of China
    Huang, Kebiao
    Pang, Yong
    Shu, Qingtai
    Fu, Tian
    [J]. 2010 18TH INTERNATIONAL CONFERENCE ON GEOINFORMATICS, 2010,
  • [8] Quantifying gap dynamics at the patch mosaic level using a spatially-explicit model of a northern hardwood forest ecosystem
    Dubé, P
    Fortin, MJ
    Canham, CD
    Marceau, DJ
    [J]. ECOLOGICAL MODELLING, 2001, 142 (1-2) : 39 - 60
  • [9] Animal Density Estimation for Large Unmarked Populations Using a Spatially Explicit Model
    Herliansyah, Riki
    King, Ruth
    Rahman, Dede Aulia
    King, Stuart
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2024,
  • [10] A critique of general allometry-inspired models for estimating forest carbon density from airborne LiDAR
    Spriggs, Rebecca A.
    Vanderwel, Mark C.
    Jones, Trevor A.
    Caspersen, John P.
    Coomes, David A.
    [J]. PLOS ONE, 2019, 14 (04):