Optimal Sublinear Algorithms for Matching and Vertex Cover

被引:10
|
作者
Behnezhad, Soheil [1 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
关键词
APPROXIMATION; WEIGHT; MODEL; TIME;
D O I
10.1109/FOCS52979.2021.00089
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the problem of estimating the size of maximum matching and minimum vertex cover in sublinear time. Denoting the number of vertices by n and the average degree in the graph by (d) over bar, we obtain the following results for both problems which are all provably time-optimal up to polylogarithmic factors:(1) A multiplicative (2+epsilon)-approximation that takes (O) over tilde (n/epsilon(2)) time using adjacency list queries. A multiplicative-additive (2, epsilon n)-approximation that takes (O) over tilde (((d) over bar/epsilon(2)) time using adjacency list queries. A multiplicative-additive (2, epsilon n)-approximation that takes (O) over tilde/epsilon(3)) time using adjacency list queries. Our main contribution and the key ingredient of the bounds above is a near-tight analysis of the average query complexity of randomized greedy maximal matching which improves upon a seminal result of Yoshida, Yamamoto, and Ito [STOC'09].
引用
收藏
页码:873 / 884
页数:12
相关论文
共 50 条
  • [1] Approximating the minimum vertex cover in sublinear time and a connection to distributed algorithms
    Parnas, Michal
    Ron, Dana
    [J]. THEORETICAL COMPUTER SCIENCE, 2007, 381 (1-3) : 183 - 196
  • [2] Sublinear algorithms for parameterized matching
    Salmela, Leena
    Tarhio, Jorma
    [J]. COMBINATORIAL PATTERN MATCHING, PROCEEDINGS, 2006, 4009 : 354 - 364
  • [3] Improved Massively Parallel Computation Algorithms for MIS, Matching, and Vertex Cover
    Ghaffari, Mohsen
    Gouleakis, Themis
    Konrad, Christian
    Mitrovic, Slobodan
    Rubinfeld, Ronitt
    [J]. PODC'18: PROCEEDINGS OF THE 2018 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING, 2018, : 129 - 138
  • [4] Sublinear Algorithms for (1.5+ε)-Approximate Matching
    Bhattacharya, Sayan
    Kiss, Peter
    Saranurak, Thatchaphol
    [J]. PROCEEDINGS OF THE 55TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2023, 2023, : 254 - 266
  • [5] Parallel Vertex Cover Algorithms on GPUs
    Yamout, Peter
    Barada, Karim
    Jaljuli, Adnan
    Mouawad, Amer E.
    El Hajj, Izzat
    [J]. 2022 IEEE 36TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS 2022), 2022, : 201 - 211
  • [6] Evolutionary algorithms and the vertex cover problem
    Oliveto, P. S.
    He, J.
    Yao, X.
    [J]. 2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 1870 - 1877
  • [7] Sublinear Time Algorithms and Complexity of Approximate Maximum Matching
    Behnezhad, Soheil
    Roghani, Mohammad
    Rubinstein, Aviad
    [J]. PROCEEDINGS OF THE 55TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2023, 2023, : 267 - 280
  • [8] A taxonomy of sublinear multiple keyword pattern matching algorithms
    Watson, BW
    Zwaan, G
    [J]. SCIENCE OF COMPUTER PROGRAMMING, 1996, 27 (02) : 85 - 118
  • [9] Dynamic Approximate Vertex Cover and Maximum Matching
    Onak, Krzysztof
    Rubinfeld, Ronitt
    [J]. PROPERTY TESTING: CURRENT RESEARCH AND SURVEYS, 2010, 6390 : 341 - 345
  • [10] Randomized Composable Coresets for Matching and Vertex Cover
    Assadi, Sepehr
    Khanna, Sanjeev
    [J]. PROCEEDINGS OF THE 29TH ACM SYMPOSIUM ON PARALLELISM IN ALGORITHMS AND ARCHITECTURES (SPAA'17), 2017, : 3 - 12