STABLE FOLIATIONS NEAR A TRAVELING FRONT FOR REACTION DIFFUSION SYSTEMS

被引:1
|
作者
Latushkin, Yuri [1 ]
Schnaubelt, Roland [2 ]
Yang, Xinyao [1 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Karlsruhe Inst Technol, Dept Math, D-76128 Karlsruhe, Germany
来源
基金
美国国家科学基金会;
关键词
Traveling front solution; reaction diffusion equations; stable manifold; NONLINEAR BOUNDARY-CONDITIONS; LINEAR PARABOLIC-SYSTEMS; INVARIANT FOLIATIONS; FREDHOLM OPERATORS; COMBUSTION FRONTS; STABILITY; WAVES; MANIFOLDS; DYNAMICS; MODEL;
D O I
10.3934/dcdsb.2017168
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the existence of a stable foliation in the vicinity of a traveling front solution for systems of reaction diffusion equations in one space dimension that arise in the study of chemical reactions models and solid fuel combustion. In this way we complement the orbital stability results from earlier papers by A. Ghazaryan, S. Schecter and Y. Latushkin. The essential spectrum of the differential operator obtained by linearization at the front touches the imaginary axis. In spaces with exponential weights, one can shift the spectrum to the left. We study the nonlinear equation on the intersection of the unweighted and weighted spaces. Small translations of the front form a center unstable manifold. For each small translation we prove the existence of a stable manifold containing the translated front and show that the stable manifolds foliate a small ball centered at the front.
引用
收藏
页码:3145 / 3165
页数:21
相关论文
共 50 条
  • [1] Stabilization of a Traveling Front Solution in a Reaction–Diffusion Equation
    K. A. Kotsubinsky
    N. T. Levashova
    A. A. Melnikova
    [J]. Moscow University Physics Bulletin, 2021, 76 : 413 - 423
  • [2] Stabilization of a Traveling Front Solution in a Reaction-Diffusion Equation
    Kotsubinsky, K. A.
    Levashova, N. T.
    Melnikova, A. A.
    [J]. MOSCOW UNIVERSITY PHYSICS BULLETIN, 2021, 76 (06) : 413 - 423
  • [3] Enhancement of the traveling front speeds in reaction-diffusion equations with advection
    Kiselev, A
    Ryzhik, L
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2001, 18 (03): : 309 - 358
  • [4] Front propagation in reaction-diffusion systems with anomalous diffusion
    D. del-Castillo-Negrete
    [J]. Boletín de la Sociedad Matemática Mexicana, 2014, 20 (1) : 87 - 105
  • [5] Front propagation in reaction-diffusion systems with anomalous diffusion
    del-Castillo-Negrete, D.
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2014, 20 (01): : 87 - 105
  • [6] Traveling wave solutions for reaction-diffusion systems
    Lin, Zhigui
    Pedersen, Michael
    Tian, Canrong
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (10) : 3303 - 3313
  • [7] Periodic traveling waves in reaction diffusion systems with delays
    Wang, ZC
    Zhang, ZQ
    Zou, X
    [J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2003, 10 (1-3): : 59 - 74
  • [8] BIFURCATION TO TRAVELING SPOTS IN REACTION-DIFFUSION SYSTEMS
    KRISCHER, K
    MIKHAILOV, A
    [J]. PHYSICAL REVIEW LETTERS, 1994, 73 (23) : 3165 - 3168
  • [9] THE STABILITY OF TRAVELING WAVE-FRONT SOLUTIONS OF A REACTION-DIFFUSION SYSTEM
    KLAASEN, GA
    TROY, WC
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1981, 41 (01) : 145 - 167
  • [10] INSTABILITIES OF FRONT PATTERNS IN REACTION DIFFUSION-SYSTEMS
    ARNEODO, A
    ELEZGARAY, J
    PEARSON, J
    RUSSO, T
    [J]. PHYSICA D, 1991, 49 (1-2): : 141 - 160