On the enumeration and classification of σ-LCD codes over finite commutative chain rings

被引:1
|
作者
Yadav, Monika [1 ]
Sharma, Anuradha [1 ]
机构
[1] IIIT Delhi, Dept Math, New Delhi 110020, India
关键词
Galois rings; Classification algorithm; Witt decomposition; LINEAR CODES; CYCLIC CODES; PREPARATA; KERDOCK;
D O I
10.1016/j.disc.2022.112915
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R-e denote a finite commutative chain ring with the maximal ideal (u) and the nilpotency index e, and let (R) over bar (e) = R-e/(u) be the residue field of R-e. Let sigma(0) be an automorphism of R-e, and let (sigma) over bar (0) be the corresponding automorphism of the residue field (R) over bar (e) of R-e, defined as sigma(0)(a + (u)) = sigma(0)(a) + (u) for all a + (u) is an element of(R) over bar (e). Let sigma be an automorphism of R-e(n) corresponding to the automorphism sigma(0) of R-e, defined as sigma (v(1), v(2), . . . , v(n)) = (sigma(0)(v(1)), sigma(0)(v(2)), . . . , sigma(0)(v(n))) for all (v(1), v(2), ... , v(n)) is an element of R-e(n). In this paper, we obtain explicit enumeration formulae for all sigma-LCD codes of an arbitrary length over the chain ring R-e when (sigma) over bar (2)(0) is the identity automorphism of (R) over bar (e). With the help of these enumeration formulae and by applying the classification algorithm, we classify all Euclidean LCD codes of lengths 2, 3, 4 and 5 over the chain ring F-2[u]/(u(2)) and of lengths 2, 3 and 4 over the chain ring F-3[u]/(u(2)), and all sigma-LCD codes of lengths 2, 3 and 4 over the chain ring F-4[u]/(u(2)), where sigma(0) is an automorphism of F-4[u]/((u2)) such that the corresponding automorphism sigma 0 of the residue field F4 has order 2. Besides this, we show that the class of sigma-LCD codes over Re is asymptotically good, and that every free linear [n, k, d]-code over Re is equivalent to a sigma-LCD [n, k, d]-code over Re when |(R) over bar (e)| > 4. We also explicitly determine all inequivalent sigma-LCD [n, 1, d]-codes and [n, n - 1, d]-codes over R-e for 1 <= d <= n. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] ON LCD CODES OVER FINITE CHAIN RINGS
    Durgun, Yilmaz
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (01) : 37 - 50
  • [2] LCD codes over finite chain rings
    Liu, Xiusheng
    Liu, Hualu
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2015, 34 : 1 - 19
  • [3] σ-LCD codes over finite chain rings
    Liu, Xiusheng
    Liu, Hualu
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (04) : 727 - 746
  • [4] ENUMERATION OF FINITE COMMUTATIVE CHAIN RINGS
    CLARK, WE
    LIANG, JJ
    [J]. JOURNAL OF ALGEBRA, 1973, 27 (03) : 445 - 453
  • [5] On the Construction of Quantum and LCD Codes from Cyclic Codes over the Finite Commutative Rings
    Ali, Shakir
    Alali, Amal S.
    Jeelani, Mohammad
    Kurulay, Muhammet
    oeztas, Elif Segah
    Sharma, Pushpendra
    [J]. AXIOMS, 2023, 12 (04)
  • [6] Notes on Linear Codes over Finite Commutative Chain Rings
    Zi-hui Liu Department of Mathematics
    [J]. Acta Mathematicae Applicatae Sinica, 2011, 27 (01) : 141 - 148
  • [7] Notes on linear codes over finite commutative chain rings
    Zi-hui Liu
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2011, 27 : 141 - 148
  • [8] Notes on linear codes over finite commutative chain rings
    Liu, Zi-hui
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2011, 27 (01): : 141 - 148
  • [9] Additive cyclic codes over finite commutative chain rings
    Martinez-Moro, Edgar
    Otal, Kamil
    Ozbudak, Ferruh
    [J]. DISCRETE MATHEMATICS, 2018, 341 (07) : 1873 - 1884
  • [10] ON ENUMERATION OF MATRICES OVER FINITE COMMUTATIVE RINGS
    BOLLMAN, D
    RAMIREZ, H
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1969, 76 (09): : 1019 - &