Bayesian classification and class area estimation of satellite images using stratification

被引:34
|
作者
Gorte, B [1 ]
Stein, A [1 ]
机构
[1] Int Inst Aerosp Survey & Earth Sci ITC, NL-7500 AA Enschede, Netherlands
来源
关键词
Bayes procedures; image classification; MAP estimation; remote sensing;
D O I
10.1109/36.673673
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The paper describes an iterative extension to maximum a posteriori (MAP) supervised classification methods. A posteriori probabilities per class are used for classification as well as to obtain class area estimates. From these, an updated set of prior probabilities is calculated and used in the next iteration, The process converges to statistically correct area estimates, The iterative process can be combined effectively with a stratification of the image, which is made on the basis of additional map data, Moreover, it relies on the sample sets being representative. Therefore, the method is shown to be well applicable in combination with an existing GIS. The paper gives a description of the procedure and provides a mathematical foundation. An example is presented to distinguish residential, industrial, and greenhouse classes. A significant improvement of the classification was obtained.
引用
收藏
页码:803 / 812
页数:10
相关论文
共 50 条
  • [1] Area estimation from a sample of satellite images: The impact of stratification on the clustering efficiency
    Gallego, Francisco Javier
    Stibig, Hans Juergen
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2013, 22 : 139 - 146
  • [2] Multi class classification of satellite images
    Radhika, K.
    Varadarajan, S.
    2017 INTERNATIONAL CONFERENCE ON INNOVATIVE MECHANISMS FOR INDUSTRY APPLICATIONS (ICIMIA), 2017, : 659 - 663
  • [3] Using neural networks for urban area classification in satellite images
    Iwaniak, A
    Krowczynska, M
    Paluszynski, W
    REMOTE SENSING IN TRANSITION, 2004, : 109 - 113
  • [4] INFORMATIVE PRIORS FOR THE BAYESIAN CLASSIFICATION OF SATELLITE IMAGES
    FRIGESSI, A
    STANDER, J
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1994, 89 (426) : 703 - 709
  • [5] The application of Bayesian network classifiers to cloud classification in satellite images
    Alonso-Montesinos, J.
    Martinez-Durban, M.
    del Sagrado, J.
    del Aguila, I. M.
    Batlles, F. J.
    RENEWABLE ENERGY, 2016, 97 : 155 - 161
  • [6] Snow covered area estimation using satellite radar wide swath images
    Luojus, K
    Pulliainen, J
    Metsämäki, S
    Hallikainen, M
    IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, Vols 1-8, Proceedings, 2005, : 320 - 323
  • [7] Early-Season Classification of Corn and Soybean Using Bayesian Discriminant Analysis on Satellite Images
    Varmaghani, A.
    Eichinger, W. E.
    AGRONOMY JOURNAL, 2016, 108 (05) : 1880 - 1889
  • [8] Tropical Cyclone Intensity Classification and Estimation Using Infrared Satellite Images With Deep Learning
    Zhang, Chang-Jiang
    Wang, Xiao-Jie
    Ma, Lei-Ming
    Lu, Xiao-Qin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 2070 - 2086
  • [9] Snow-covered area estimation using satellite radar wide-swath images
    Luojus, Kari P.
    Pulliainen, Jouni T.
    Metsamaki, Sari J.
    Hallikainen, Martti T.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (04): : 978 - 989
  • [10] STRUCTURAL CLASSIFICATION IMAGES USING BAYESIAN DECISION MAKING
    Gadetska, S., V
    Gorokhovatsky, V. A.
    RADIO ELECTRONICS COMPUTER SCIENCE CONTROL, 2018, (02) : 90 - 97