Block operator matrices, optical potentials, trace class perturbations and scattering

被引:0
|
作者
Behrndt, Jussi [1 ]
Neidhardt, Hagen [2 ]
Rehberg, Joachim [2 ]
机构
[1] Tech Univ Berlin, Inst Math, Str des 17, Juni 136, D-10623 Berlin, Germany
[2] Weierstrass Ins Angew Anal & Stochastik, D-10117 Berlin, Germany
来源
关键词
Feshbach decomposition; optical potential; Lax-Phillips scattering theory; dissipative scattering theory; scattering matrix; characteristic function; dissipative operators;
D O I
10.1007/978-3-7643-8270-4_3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an operator-valued block-matrix model, which is called in quantum physics a Feshbach decomposition, a scattering theory is considered. Under trace class perturbations the channel scattering matrices are calculated. Using Feshbach's optical potential it is shown that for a given spectral parameter the channel scattering matrices can be recovered either from a dissipative or from a Lax-Phillips scattering theory.
引用
收藏
页码:33 / 49
页数:17
相关论文
共 50 条
  • [1] On a Class of Block Operator Matrices in System Theory
    Trostorff, Sascha
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2017, 11 (04) : 947 - 960
  • [2] Spectral enclosures for a class of block operator matrices
    Giribet, Juan
    Langer, Matthias
    Martinez Peria, Francisco
    Philipp, Friedrich
    Trunk, Carsten
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (10)
  • [3] On a Class of Block Operator Matrices in System Theory
    Sascha Trostorff
    [J]. Complex Analysis and Operator Theory, 2017, 11 : 947 - 960
  • [4] On the Abstract Inverse Scattering Problem for Trace Class Perturbations
    Hatamleh, R.
    Zolotarev, V. A.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2017, 13 (01) : 3 - 34
  • [5] Analyticity of Semigroups Related to a Class of Block Operator Matrices
    Trunk, Carsten
    [J]. OPERATOR ALGEBRAS, OPERATOR THEORY AND APPLICATIONS, 2010, 195 : 257 - +
  • [6] SPECTRAL INCLUSION PROPERTY FOR A CLASS OF BLOCK OPERATOR MATRICES
    Qi, Yaru
    Qiu, Wenwen
    Trunk, Carsten
    Wilson, Mitsuru
    [J]. OPERATORS AND MATRICES, 2023, 17 (04): : 953 - 966
  • [7] The Decomposability for Operator Matrices and Perturbations
    Xiao Li Wang
    [J]. Acta Mathematica Sinica, English Series, 2023, 39 : 497 - 512
  • [8] Perturbations of spectra of operator matrices
    Djordjevic, DS
    [J]. JOURNAL OF OPERATOR THEORY, 2002, 48 (03) : 467 - 486
  • [9] The Decomposability for Operator Matrices and Perturbations
    Wang, Xiao Li
    Alatancang
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (03) : 497 - 512
  • [10] The Decomposability for Operator Matrices and Perturbations
    Xiao Li WANG
    ALATANCANG
    [J]. Acta Mathematica Sinica,English Series, 2023, (03) : 497 - 512