The development of a testbed for the X-ray Interferometer mission

被引:3
|
作者
den Hartog, R. [1 ]
Uttley, P. [2 ]
Willingale, R. [3 ]
Hoevers, H. [1 ]
den Herder, J-W [1 ]
Wise, M. [1 ]
机构
[1] SRON Netherlands Inst Space Res, Utrecht, Netherlands
[2] Univ Amsterdam, Amsterdam, Netherlands
[3] Univ Leicester, Leicester, Leics, England
关键词
X-ray interferometry; high angular resolution;
D O I
10.1117/12.2562831
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
An X-ray Interferometer (XRI) has recently been proposed as a theme for ESA's Voyage 2050 planning cycle, with the eventual goal to observe the X-ray sky with an unprecedented angular resolution better than 1 micro arcsec (5 prad) [1]. A scientifically very interesting mission is possible on the basis of a single spacecraft [2], owing to the compact 'telephoto' design proposed earlier by Willingale [3]. Between the practical demonstration of X-ray interferometry at 1 keV by Cash et al. [4] with a 1 mm baseline and 0.1 arcsec effective resolution to a mission flying an interferometer with a baseline of one or more meters, an effective collecting area of square meters and micro arcsec resolution lie many milestones. The first important steps to scale up from a laboratory experiment to a viable mission concept will have to be taken on a scalable and flexible testbed set-up. Such a testbed cannot singularly focus on the optical aspects, but should simultaneously address the thermal and mechanical stability of the interferometer. A particular challenge is the coherent X-ray source, which should provide a wavefront at the entrance of the interferometer that is transversely coherent over a distance at least equal to the baseline, and bright enough. In this paper, we will explore the build-up of a testbed in several stages, with increasing requirements on optical quality and associated thermo-mechanical control and source sophistication, with the intent to guide the technological development of X-ray interferometry from the lab to space in a sequence of achievable milestones.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] An AOCS concept for the X-ray Interferometer mission
    den Hartog, R.
    Uttley, P.
    Hoevers, H.
    Den Herder, Jan-Willem
    Wise, Michael
    [J]. SPACE TELESCOPES AND INSTRUMENTATION 2022: ULTRAVIOLET TO GAMMA RAY, 2022, 12181
  • [2] Development of a grazing incidence x-ray interferometer
    Shipley, A
    Cash, W
    Osterman, S
    Joy, M
    Carter, J
    [J]. OPTOMECHANICAL ENGINEERING AND VIBRATION CONTROL, 1999, 3786 : 291 - 299
  • [3] The development of the mirror for the Athena X-ray mission
    Collon, Maximilien J.
    Abalo, Luis
    Barriere, Nicolas M.
    Bayerle, Alex
    Castiglione, Luigi
    Eenkhoorn, Noe
    Girou, David
    Gunther, Ramses
    Hauser, Enrico
    van der Hoeven, Roy
    den Hollander, Jasper
    Jenkins, Yvette
    Landgraf, Boris
    Keek, Laurens
    Okma, Ben
    Ribeiro, Paulo da Silva
    Rizzos, Chris
    Thete, Aniket
    Vacanti, Giuseppe
    Verhoeckx, Sjoerd
    Vervest, Mark
    Visser, Roel
    Voruz, Luc
    Bavdaz, Marcos
    Wille, Eric
    Ferreira, Ivo
    Riekerink, Mark Olde
    Haneveld, Jeroen
    Koelewijn, Arenda
    Wijnperle, Maurice
    Lankwarden, Jan-Joost
    Schurink, Bart
    Start, Ronald
    van Baren, Coen
    den Herder, Jan-Willem
    Handick, Evelyn
    Krumrey, Michael
    Burwitz, Vadim
    Massahi, Sonny
    Ferreira, Desiree della Monica
    Svendsen, Sara
    Christensen, Finn E.
    Mundon, William
    Phillips, Gavin
    [J]. SPACE TELESCOPES AND INSTRUMENTATION 2022: ULTRAVIOLET TO GAMMA RAY, 2022, 12181
  • [4] Development of X-ray optics for the XEUS mission
    Bavdaz, M
    Lumb, D
    Peacock, A
    Beijersbergen, M
    Kraft, S
    [J]. DESIGN AND MICROFABRICATION OF NOVEL X-RAY OPTICS II, 2004, 5539 : 95 - 103
  • [5] AN X-RAY INTERFEROMETER
    BONSE, U
    HART, M
    [J]. APPLIED PHYSICS LETTERS, 1965, 6 (08) : 155 - &
  • [6] Development of the x-ray interferometer and the method of temporal synchronization of x-ray and optical pulse
    Hasegawa, Noboru
    Yamamoto, Minoru
    Terakawa, Kota
    Nishikino, Masaharu
    Ochi, Yoshihiro
    Minami, Yasuo
    Tomita, Takuro
    Kawachi, Tetsuya
    Suemoto, Tohru
    [J]. LASER-DRIVEN RELATIVISTIC PLASMAS APPLIED TO SCIENCE, ENERGY, INDUSTRY, AND MEDICINE, 2012, 1465 : 23 - 27
  • [7] Shearing x-ray interferometer with an x-ray prism
    Kohmura, Y
    Ishikawa, T
    Takano, H
    Suzuki, Y
    [J]. JOURNAL OF APPLIED PHYSICS, 2003, 93 (04) : 2283 - 2285
  • [8] Development of x-ray microcalorimeter imaging spectrometers for the X-ray Surveyor mission concept
    Bandler, Simon R.
    Adams, Joseph S.
    Chervenak, James A.
    Datesman, Aaron M.
    Eckart, Megan E.
    Finkbeiner, Fred M.
    Kelley, Richard L.
    Kilbourne, Caroline A.
    Betancourt-Martineza, Gabriel
    Miniussi, Antoine R.
    Porter, Frederick S.
    Sadleir, John E.
    Sakai, Kazuhiro
    Smith, Stephen J.
    Stevenson, Thomas R.
    Wakeham, Nicholas A.
    Wassell, Edward J.
    Yoon, Wonsik
    Becker, Dan
    Bennett, Douglas
    Doriese, Wilham B.
    Fowler, Joseph W.
    Gard, Johnathon D.
    Hilton, Gene C.
    Mates, Benjamin
    Morgan, Kelsey M.
    Reintsema, Carl D.
    Swetz, Daniel
    Ullom, Joel N.
    Chaudhuri, Saptarshi
    Irwin, Kent D.
    Lee, Sang-Jun
    Vikhlinin, Alexey
    [J]. SPACE TELESCOPES AND INSTRUMENTATION 2016: ULTRAVIOLET TO GAMMA RAY, 2016, 9905
  • [9] X-ray mirror development and testing for the ATHENA mission
    Ferreira, Desiree Della Monica
    Jakobsen, Anders C.
    Massahi, Sonny
    Christensen, Finn E.
    Shortt, Brian
    Garnaes, Jorgen
    Torras-Rosell, Antoni
    Krumrey, Michael
    Cibik, Levent
    Marggraf, Stefanie
    [J]. SPACE TELESCOPES AND INSTRUMENTATION 2016: ULTRAVIOLET TO GAMMA RAY, 2016, 9905
  • [10] Development of the X-ray CCD camera for the MAXI mission
    Katayama, H
    Tomida, H
    Matsuoka, M
    Tsunemi, H
    Miyata, E
    Kamiyama, D
    Nemes, N
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2005, 541 (1-2): : 350 - 356