Boundary oscillations of harmonic functions in Lipschitz domains

被引:0
|
作者
Mozolyako, P. [1 ]
机构
[1] St Petersburg State Univ, Chebyshev Lab, 14th Line 29B, St Petersburg 199178, Russia
关键词
Harmonic functions; Bloch functions; Growth classes; Radial weights; GROWTH;
D O I
10.1007/s13348-016-0177-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let u(x, y) be a harmonic function in the halfspace that grows near the boundary not faster than some fixed majorant w(y). Recently it was proven that an appropriate weighted average along the vertical lines of such a function satisfies the law of iterated logarithm (LIL). We extend this result to a class of Lipschitz domains in . In particular, we obtain the local version of this LIL for the upper halfspace. The proof is based on approximation of the weighted averages by a Bloch function, satisfying some additional condition determined by the weight w. The growth rate of such Bloch function depends on w and, for slowly increasing w, turns out to be slower than the one provided by LILs of Makarov and Llorente. We discuss the necessary condition for an arbitrary Bloch function to exhibit this type of behaviour.
引用
收藏
页码:359 / 376
页数:18
相关论文
共 50 条