Tunable Axion Plasma Haloscopes

被引:152
|
作者
Lawson, Matthew [1 ,2 ,3 ]
Millar, Alexander J. [1 ,2 ,3 ]
Pancaldi, Matteo [4 ]
Vitagliano, Edoardo [5 ]
Wilczek, Frank [1 ,2 ,3 ,6 ,7 ,8 ,9 ]
机构
[1] Stockholm Univ, Dept Phys, AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden
[2] KTH Royal Inst Technol, NORDITA, Roslagstullsbacken 23, S-10691 Stockholm, Sweden
[3] Stockholm Univ, Roslagstullsbacken 23, S-10691 Stockholm, Sweden
[4] Stockholm Univ, Dept Phys, AlbaNova, S-10691 Stockholm, Sweden
[5] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, Fohringer Ring 6, D-80805 Munich, Germany
[6] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
[7] TD Lee Inst, Shanghai 200240, Peoples R China
[8] Shanghai Jiao Tong Univ, Dept Phys & Astron, Wilczek Quantum Ctr, Shanghai 200240, Peoples R China
[9] Arizona State Univ, Dept Phys & Origins Project, Tempe, AZ 25287 USA
基金
欧盟地平线“2020”; 瑞典研究理事会; 欧洲研究理事会;
关键词
LIGHT; CAVITY; SEARCH;
D O I
10.1103/PhysRevLett.123.141802
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a new strategy for searching for dark matter axions using tunable cryogenic plasmas. Unlike current experiments, which repair the mismatch between axion and photon masses by breaking translational invariance (cavity and dielectric haloscopes), a plasma haloscope enables resonant conversion by matching the axion mass to a plasma frequency. A key advantage is that the plasma frequency is unrelated to the physical size of the device, allowing large conversion volumes. We identify wire metamaterials as a promising candidate plasma, wherein the plasma frequency can be tuned by varying the interwire spacing. For realistic experimental sizes, we estimate competitive sensitivity for axion masses of 35-400 mu eV, at least.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Tunable Supermode Dielectric Resonators for Axion Dark-Matter Haloscopes
    McAllister, Ben T.
    Flower, Graeme
    Tobar, Lucas E.
    Tobar, Michael E.
    PHYSICAL REVIEW APPLIED, 2018, 9 (01):
  • [2] Novel Resonators for Axion Haloscopes
    McAllister, Ben T.
    Goryachev, Maxim
    Tobar, Michael E.
    MICROWAVE CAVITIES AND DETECTORS FOR AXION RESEARCH, 2018, 211 : 53 - 59
  • [3] Revisiting the detection rate for axion haloscopes
    Kim, Dongok
    Jeong, Junu
    Youn, SungWoo
    Kim, Younggeun
    Semertzidis, Yannis K.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2020, (03):
  • [4] Electric and magnetic energy at axion haloscopes
    Ko, B. R.
    Themann, H.
    Jang, W.
    Choi, J.
    Kim, D.
    Lee, M. J.
    Lee, J.
    Won, E.
    Semertzidis, Y. K.
    PHYSICAL REVIEW D, 2016, 94 (11)
  • [5] Sequential hypothesis testing for axion haloscopes
    Rosso, Andrea Gallo
    Algeri, Sara
    Conrad, Jan
    PHYSICAL REVIEW D, 2023, 108 (02)
  • [6] Sensitivity of Resonant Axion Haloscopes to Quantum Electromagnetodynamics
    Tobar, Michael E.
    Thomson, Catriona A.
    McAllister, Benjamin T.
    Goryachev, Maxim
    Sokolov, Anton V.
    Ringwald, Andreas
    ANNALEN DER PHYSIK, 2024, 536 (01)
  • [7] Dielectric haloscopes: sensitivity to the axion dark matter velocity
    Miller, Alexander J.
    Redondo, Javier
    Steffen, Frank D.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2017, (10):
  • [8] Post-inflationary axions: a minimal target for axion haloscopes
    Gorghetto, Marco
    Hardy, Edward
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (05)
  • [9] Dielectric Haloscopes: A New Way to Detect Axion Dark Matter
    Caldwell, Allen
    Dvali, Gia
    Majorovits, Bela
    Millar, Alexander
    Raffelt, Georg
    Redondo, Javier
    Reimann, Olaf
    Simon, Frank
    Steffen, Frank
    PHYSICAL REVIEW LETTERS, 2017, 118 (09)
  • [10] Simulating MADMAX in 3D: requirements for dielectric axion haloscopes
    Knirck, S.
    Schuette-Engel, J.
    Beurthey, S.
    Breitmoser, D.
    Caldwell, A.
    Diaconu, C.
    Diehl, J.
    Egge, J.
    Esposito, M.
    Gardikiotis, A.
    Garutti, E.
    Heyminck, S.
    Hubaut, F.
    Jochum, J.
    Karst, P.
    Kramer, M.
    Krieger, C.
    Labat, D.
    Lee, C.
    Li, X.
    Lindner, A.
    Majorovits, B.
    Martens, S.
    Matysek, M.
    Oez, E.
    Planat, L.
    Pralavorio, P.
    Raffelt, G.
    Ranadive, A.
    Redondo, J.
    Reimann, O.
    Ringwald, A.
    Roch, N.
    Schaffran, J.
    Schmidt, A.
    Shtembari, L.
    Steffen, F.
    Strandhagen, C.
    Strom, D.
    Usherov, I
    Wieching, G.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (10):