Fuzzy random dependent-chance bilevel programming with applications

被引:0
|
作者
Liang, Rui [1 ]
Gao, Jinwu [2 ]
Iwamura, Kakuzo [3 ]
机构
[1] Chongqing Univ, Econ Ind & Business Management Coll, Chongqing 400044, Peoples R China
[2] Renmin Univ China, Sch Informat, Beijing 100872, Peoples R China
[3] Josai Univ, Dept Math, Saitama 3500248, Japan
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a two-level decentralized decision-making problem is formulated as fuzzy random dependent-chance bilevel programming. Ve define the fuzzy random Nash equilibrium in the lower level problem and the fuzzy random Stackelberg-Nash equilibrium of the overall problem. In order to find the equilibria, we propose a hybrid intelligent algorithm, in which neural network, as uncertain function approximator, plays a crucial role in saving computing time, and genetic algorithm is used for optimization. Finally, we apply the fuzzy random dependent-chance bilevel programming to hierarchical resource allocation problem for illustrating the modelling idea and the effectiveness of the hybrid intelligent algorithm.
引用
收藏
页码:257 / +
页数:3
相关论文
共 50 条